Documentation

Mathlib.Algebra.Star.LinearMap

Intrinsic star operation on linear maps #

This file defines the star operation on linear maps: (star f) x = star (f (star x)). This corresponds to a map being star-preserving, i.e., a map is self-adjoint iff it is star-preserving.

Implementation notes #

Because there is a global star instance on H →ₗ[š•œ] H (defined as the linear map adjoint on finite-dimensional Hilbert spaces), which is mathematically distinct from this star, we provide this instance on WithConv (E →ₗ[R] F).

The reason we chose WithConv is because together with the convolution product from Mathlib/RingTheory/Coalgebra/Convolution.lean, we get a ⋆-algebra when star (WithConv.toConv comul) = WithConv.toConv (comm ∘ comul).

instance LinearMap.intrinsicStar {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [InvolutiveStar R] [AddCommMonoid E] [Module R E] [StarAddMonoid E] [StarModule R E] [AddCommMonoid F] [Module R F] [StarAddMonoid F] [StarModule R F] :

The intrinsic star operation on linear maps E →ₗ F defined by (star f) x = star (f (star x)).

Equations
    @[simp]
    theorem LinearMap.intrinsicStar_apply {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [InvolutiveStar R] [AddCommMonoid E] [Module R E] [StarAddMonoid E] [StarModule R E] [AddCommMonoid F] [Module R F] [StarAddMonoid F] [StarModule R F] (f : WithConv (E →ₗ[R] F)) (x : E) :
    (star f).ofConv x = star (f.ofConv (star x))

    The involutive intrinsic star structure on linear maps.

    Equations

      The intrinsic star additive monoid structure on linear maps.

      Equations

        A linear map is self-adjoint (with respect to the intrinsic star) iff it is star-preserving.

        @[deprecated LinearMap.IntrinsicStar.isSelfAdjoint_iff_map_star (since := "2025-12-09")]
        theorem LinearMap.isSelfAdjoint_iff_map_star {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [InvolutiveStar R] [AddCommMonoid E] [Module R E] [StarAddMonoid E] [StarModule R E] [AddCommMonoid F] [Module R F] [StarAddMonoid F] [StarModule R F] (f : WithConv (E →ₗ[R] F)) :
        IsSelfAdjoint f ↔ āˆ€ (x : E), f.ofConv (star x) = star (f.ofConv x)

        Alias of LinearMap.IntrinsicStar.isSelfAdjoint_iff_map_star.


        A linear map is self-adjoint (with respect to the intrinsic star) iff it is star-preserving.

        @[simp]
        theorem IntrinsicStar.StarHomClass.isSelfAdjoint {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [InvolutiveStar R] [AddCommMonoid E] [Module R E] [StarAddMonoid E] [StarModule R E] [AddCommMonoid F] [Module R F] [StarAddMonoid F] [StarModule R F] {S : Type u_4} [FunLike S E F] [LinearMapClass S R E F] [StarHomClass S E F] {f : S} :

        A star-preserving linear map is self-adjoint (with respect to the intrinsic star).

        @[deprecated IntrinsicStar.StarHomClass.isSelfAdjoint (since := "2025-12-09")]
        theorem StarHomClass.isSelfAdjoint {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [InvolutiveStar R] [AddCommMonoid E] [Module R E] [StarAddMonoid E] [StarModule R E] [AddCommMonoid F] [Module R F] [StarAddMonoid F] [StarModule R F] {S : Type u_4} [FunLike S E F] [LinearMapClass S R E F] [StarHomClass S E F] {f : S} :

        Alias of IntrinsicStar.StarHomClass.isSelfAdjoint.


        A star-preserving linear map is self-adjoint (with respect to the intrinsic star).

        @[reducible, inline]

        The convolutive intrinsic star ring on linear maps from coalgebras to ⋆-algebras, given that star (toConv comul) = toConv (comm āˆ˜ā‚— comul).

        In finite-dimensional C⋆-algebras, under the GNS construction, and the adjoint coalgebra, we get this hypothesis.

        See note [reducible non-instances].

        Equations
          Instances For
            @[simp]
            theorem LinearMap.intrinsicStar_single {R : Type u_5} [CommSemiring R] [StarRing R] {n : Type u_8} [DecidableEq n] {B : n → Type u_9} [(i : n) → AddCommMonoid (B i)] [(i : n) → Module R (B i)] [(i : n) → StarAddMonoid (B i)] [āˆ€ (i : n), StarModule R (B i)] (i : n) :
            theorem Pi.intrinsicStar_comul {R : Type u_5} [CommSemiring R] [StarRing R] {n : Type u_8} [DecidableEq n] {B : n → Type u_9} [(i : n) → AddCommMonoid (B i)] [(i : n) → Module R (B i)] [(i : n) → StarAddMonoid (B i)] [āˆ€ (i : n), StarModule R (B i)] [Fintype n] [(i : n) → CoalgebraStruct R (B i)] (h : āˆ€ (i : n), star (WithConv.toConv CoalgebraStruct.comul) = WithConv.toConv (↑(TensorProduct.comm R (B i) (B i)) āˆ˜ā‚— CoalgebraStruct.comul)) :
            instance Pi.convIntrinsicStarRingCommSemiring {R : Type u_5} [CommSemiring R] [StarRing R] {n : Type u_8} [DecidableEq n] [Fintype n] {m : Type u_10} :
            StarRing (WithConv ((n → R) →ₗ[R] m → R))

            The intrinsic star convolutive ring on linear maps from n → R to m → R.

            Equations
              theorem LinearMap.toMatrix'_intrinsicStar {R : Type u_4} {m : Type u_5} {n : Type u_6} [CommSemiring R] [StarRing R] [Fintype m] [DecidableEq m] (f : WithConv ((m → R) →ₗ[R] n → R)) :
              theorem LinearMap.IntrinsicStar.isSelfAdjoint_iff_toMatrix' {R : Type u_4} {m : Type u_5} {n : Type u_6} [CommSemiring R] [StarRing R] [Fintype m] [DecidableEq m] (f : WithConv ((m → R) →ₗ[R] n → R)) :
              IsSelfAdjoint f ↔ āˆ€ (i : n) (j : m), IsSelfAdjoint (toMatrix' f.ofConv i j)

              A linear map f : (m → R) →ₗ (n → R) is self-adjoint (with respect to the intrinsic star) iff its corresponding matrix f.toMatrix' has all self-adjoint elements. So star-preserving maps correspond to their matrices containing only self-adjoint elements.

              theorem Matrix.IntrinsicStar.isSelfAdjoint_toLin'_iff {R : Type u_4} {m : Type u_5} {n : Type u_6} [CommSemiring R] [StarRing R] [Fintype m] [DecidableEq m] (A : Matrix n m R) :
              IsSelfAdjoint (WithConv.toConv (toLin' A)) ↔ āˆ€ (i : n) (j : m), IsSelfAdjoint (A i j)

              Given a matrix A, A.toLin' is self-adjoint (with respect to the intrinsic star) iff all its elements are self-adjoint.

              Intrinsic star operation for (End R E)Ė£.

              Equations