Documentation Verification Report

Subalgebra

πŸ“ Source: Mathlib/Algebra/Star/Subalgebra.lean

Statistics

MetricCount
DefinitionstoStarSubalgebra, ofInjective, restrictScalars, codRestrict, equalizer, range, rangeRestrict, restrictScalars, adjoin, adjoinCommRingOfComm, adjoinCommRingOfIsStarNormal, adjoinCommSemiringOfComm, adjoinCommSemiringOfIsStarNormal, gi, algebra, centralizer, comap, completeLattice, copy, inclusion, inhabited, instPartialOrder, map, ofClass, setLike, starRing, subtype, toNonUnitalStarSubalgebra, toSubalgebra, involutiveStar, starClosure
31
Theoremsadjoin_le_starAlgebra_adjoin, toStarSubalgebra_toNonUnitalStarSubalgebra, ofInjective_apply, ofInjective_symm_apply, restrictScalars_apply, restrictScalars_injective, restrictScalars_symm_apply, adjoin_le_equalizer, coe_codRestrict, ext_adjoin, ext_adjoin_singleton, ext_of_adjoin_eq_top, injective_codRestrict, map_adjoin, mem_equalizer, range_eq_map_top, restrictScalars_apply, restrictScalars_injective, subtype_comp_codRestrict, adjoin_eq, adjoin_eq_span, adjoin_eq_starClosure_adjoin, adjoin_induction, adjoin_induction_subtype, adjoin_inductionβ‚‚, adjoin_le, adjoin_le_centralizer_centralizer, adjoin_le_iff, adjoin_mono, adjoin_nonUnitalStarSubalgebra, adjoin_nonUnitalStarSubalgebra_eq_span, adjoin_toSubalgebra, gc, mem_adjoin_of_mem, self_mem_adjoin_singleton, star_self_mem_adjoin_singleton, star_subset_adjoin, subset_adjoin, algebraMap_mem, bot_toSubalgebra, centralizer_le, centralizer_toSubalgebra, coe_bot, coe_centralizer, coe_centralizer_centralizer, coe_comap, coe_copy, coe_iInf, coe_inf, coe_map, coe_mk, coe_sInf, coe_subtype, coe_toSubalgebra, coe_top, comap_comap, comap_id, comap_injective, comap_mono, copy_eq, eq_top_iff, ext, ext_iff, gc_map_comap, iInf_toSubalgebra, inclusion_apply, inclusion_injective, inf_toSubalgebra, instCanLiftSetCoeAndForallForallForallMemForallHAddForallForallForallForallHMulForallCoeRingHomAlgebraMapForallForallStar, map_iInf, map_id, map_inf, map_injective, map_le_iff_le_comap, map_map, map_mono, map_sup, map_toSubalgebra, mem_bot, mem_carrier, mem_centralizer_iff, mem_comap, mem_iInf, mem_inf, mem_map, mem_sInf, mem_sup_left, mem_sup_right, mem_toSubalgebra, mem_top, mul_mem_sup, ofClass_carrier, one_mem_toNonUnitalStarSubalgebra, rangeS_le, range_le, range_subset, sInf_toSubalgebra, smulMemClass, smul_mem, starMemClass, starModule, star_mem', subringClass, subsemiringClass, subtype_apply, subtype_comp_inclusion, toNonUnitalStarSubalgebra_toStarSubalgebra, toSubalgebra_eq_top, toSubalgebra_inj, toSubalgebra_injective, toSubalgebra_le_iff, toSubalgebra_subtype, top_toSubalgebra, coe_star, coe_starClosure, mem_starClosure, mem_star_iff, starClosure_eq_adjoin, starClosure_le, starClosure_le_iff, starClosure_toSubalgebra, star_adjoin_comm, star_mem_star_iff, star_mono
124
Total155

NonUnitalStarAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_le_starAlgebra_adjoin πŸ“–mathematicalβ€”NonUnitalStarSubalgebra
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Algebra.toModule
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
Preorder.toLE
PartialOrder.toPreorder
NonUnitalStarSubalgebra.instPartialOrder
adjoin
IsScalarTower.right
Algebra.to_smulCommClass
StarSubalgebra.toNonUnitalStarSubalgebra
StarAlgebra.adjoin
β€”adjoin_le
IsScalarTower.right
Algebra.to_smulCommClass
StarAlgebra.subset_adjoin

NonUnitalStarSubalgebra

Definitions

NameCategoryTheorems
toStarSubalgebra πŸ“–CompOp
2 mathmath: StarSubalgebra.toNonUnitalStarSubalgebra_toStarSubalgebra, toStarSubalgebra_toNonUnitalStarSubalgebra

Theorems

NameKindAssumesProvesValidatesDepends On
toStarSubalgebra_toNonUnitalStarSubalgebra πŸ“–mathematicalNonUnitalStarSubalgebra
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
SetLike.instMembership
instSetLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
StarSubalgebra.toNonUnitalStarSubalgebra
toStarSubalgebra
β€”β€”

StarAlgEquiv

Definitions

NameCategoryTheorems
ofInjective πŸ“–CompOp
2 mathmath: ofInjective_symm_apply, ofInjective_apply
restrictScalars πŸ“–CompOp
3 mathmath: restrictScalars_symm_apply, restrictScalars_apply, restrictScalars_injective

Theorems

NameKindAssumesProvesValidatesDepends On
ofInjective_apply πŸ“–mathematicalDFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarAlgHom.instFunLike
StarAlgEquiv
StarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
StarAlgHom.range
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
SubsemiringClass.toSemiring
StarSubalgebra.subsemiringClass
Distrib.toMul
Algebra.toSMul
StarSubalgebra.algebra
StarMemClass.instStar
StarSubalgebra.starMemClass
instFunLike
ofInjective
StarAlgHom.rangeRestrict
β€”StarSubalgebra.subsemiringClass
StarSubalgebra.starMemClass
ofInjective_symm_apply πŸ“–mathematicalDFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarAlgHom.instFunLike
StarAlgEquiv
StarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
StarAlgHom.range
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
SubsemiringClass.toSemiring
StarSubalgebra.subsemiringClass
Distrib.toMul
Algebra.toSMul
StarSubalgebra.algebra
StarMemClass.instStar
StarSubalgebra.starMemClass
instFunLike
symm
ofInjective
Equiv.invFun
Subalgebra
Subalgebra.instSetLike
AlgHom.range
AlgHomClass.toAlgHom
AlgEquiv.toEquiv
Subalgebra.toSemiring
Subalgebra.algebra
AlgEquiv.ofInjective
β€”StarSubalgebra.subsemiringClass
StarSubalgebra.starMemClass
restrictScalars_apply πŸ“–mathematicalβ€”DFunLike.coe
StarAlgEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
Algebra.toSMul
instFunLike
restrictScalars
β€”β€”
restrictScalars_injective πŸ“–mathematicalβ€”StarAlgEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
Algebra.toSMul
restrictScalars
β€”ext
DFunLike.congr_fun
restrictScalars_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
StarAlgEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
Algebra.toSMul
instFunLike
symm
restrictScalars
Equiv.invFun
RingEquiv.toEquiv
StarRingEquiv.toRingEquiv
toStarRingEquiv
β€”β€”

StarAlgHom

Definitions

NameCategoryTheorems
codRestrict πŸ“–CompOp
3 mathmath: coe_codRestrict, subtype_comp_codRestrict, injective_codRestrict
equalizer πŸ“–CompOp
3 mathmath: mem_equalizer, polynomialFunctions.starClosure_le_equalizer, adjoin_le_equalizer
range πŸ“–CompOp
8 mathmath: StarAlgEquiv.ofInjective_symm_apply, StarAlgEquiv.ofInjective_apply, NonUnitalStarSubalgebra.unitization_range, Unitization.starLift_range, range_cfc_eq_range_cfcHom, range_eq_map_top, Unitization.starLift_range_le, range_cfcHom
rangeRestrict πŸ“–CompOp
1 mathmath: StarAlgEquiv.ofInjective_apply
restrictScalars πŸ“–CompOp
2 mathmath: restrictScalars_apply, restrictScalars_injective

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_le_equalizer πŸ“–mathematicalSet.EqOn
DFunLike.coe
StarSubalgebra
Preorder.toLE
PartialOrder.toPreorder
StarSubalgebra.instPartialOrder
StarAlgebra.adjoin
equalizer
β€”StarAlgebra.adjoin_le
coe_codRestrict πŸ“–mathematicalStarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
DFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
instFunLike
SubsemiringClass.toSemiring
StarSubalgebra.subsemiringClass
StarSubalgebra.algebra
StarMemClass.instStar
StarSubalgebra.starMemClass
codRestrict
β€”StarSubalgebra.subsemiringClass
StarSubalgebra.starMemClass
ext_adjoin πŸ“–β€”DFunLike.coe
StarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
StarAlgebra.adjoin
β€”β€”StarSubalgebra.subsemiringClass
StarSubalgebra.starMemClass
DFunLike.ext
StarAlgebra.adjoin_induction_subtype
StarAlgebra.subset_adjoin
AlgHomClass.commutes
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
StarHomClass.map_star
ext_adjoin_singleton πŸ“–β€”DFunLike.coe
StarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
StarAlgebra.adjoin
Set
Set.instSingletonSet
StarAlgebra.self_mem_adjoin_singleton
β€”β€”StarSubalgebra.subsemiringClass
StarSubalgebra.starMemClass
StarAlgebra.self_mem_adjoin_singleton
ext_adjoin
Set.mem_singleton_iff
ext_of_adjoin_eq_top πŸ“–β€”StarAlgebra.adjoin
Top.top
StarSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
StarSubalgebra.completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.EqOn
DFunLike.coe
β€”β€”DFunLike.ext
adjoin_le_equalizer
injective_codRestrict πŸ“–mathematicalStarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
DFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
instFunLike
SubsemiringClass.toSemiring
StarSubalgebra.subsemiringClass
StarSubalgebra.algebra
StarMemClass.instStar
StarSubalgebra.starMemClass
codRestrict
β€”StarSubalgebra.subsemiringClass
StarSubalgebra.starMemClass
map_adjoin πŸ“–mathematicalβ€”StarSubalgebra.map
StarAlgebra.adjoin
Set.image
DFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
instFunLike
β€”GaloisConnection.l_comm_of_u_comm
Set.image_preimage
StarSubalgebra.gc_map_comap
StarAlgebra.gc
mem_equalizer πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
equalizer
DFunLike.coe
β€”β€”
range_eq_map_top πŸ“–mathematicalβ€”range
StarSubalgebra.map
Top.top
StarSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
StarSubalgebra.completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”StarSubalgebra.ext
StarSubalgebra.top_toSubalgebra
restrictScalars_apply πŸ“–mathematicalβ€”DFunLike.coe
StarAlgHom
instFunLike
restrictScalars
β€”β€”
restrictScalars_injective πŸ“–mathematicalβ€”StarAlgHom
restrictScalars
β€”ext
DFunLike.congr_fun
subtype_comp_codRestrict πŸ“–mathematicalStarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
DFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
instFunLike
comp
SubsemiringClass.toSemiring
StarSubalgebra.subsemiringClass
StarSubalgebra.algebra
StarMemClass.instStar
StarSubalgebra.starMemClass
StarSubalgebra.subtype
codRestrict
β€”ext
StarSubalgebra.subsemiringClass
StarSubalgebra.starMemClass
coe_codRestrict

StarAlgebra

Definitions

NameCategoryTheorems
adjoin πŸ“–CompOp
28 mathmath: adjoin_eq, NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, adjoin_nonUnitalStarSubalgebra, self_mem_adjoin_singleton, NonUnitalStarSubalgebra.unitization_range, adjoin_nonUnitalStarSubalgebra_eq_span, polynomialFunctions.starClosure_eq_adjoin_X, Unitization.starLift_range, ContinuousMap.adjoin_id_eq_span_one_union, Subalgebra.starClosure_eq_adjoin, star_self_mem_adjoin_singleton, star_subset_adjoin, StarAlgHom.adjoin_le_equalizer, subset_adjoin, adjoin_le_centralizer_centralizer, gc, StarSubalgebra.topologicalClosure_adjoin_le_centralizer_centralizer, adjoin_toSubalgebra, adjoin_le_iff, ContinuousMap.adjoin_id_eq_span_one_add, adjoin_le, adjoin_eq_span, ContinuousMap.ker_evalStarAlgHom_inter_adjoin_id, adjoin_mono, StarAlgHom.map_adjoin, NonUnitalStarAlgebra.adjoin_le_starAlgebra_adjoin, adjoin_eq_starClosure_adjoin, mem_adjoin_of_mem
adjoinCommRingOfComm πŸ“–CompOpβ€”
adjoinCommRingOfIsStarNormal πŸ“–CompOpβ€”
adjoinCommSemiringOfComm πŸ“–CompOpβ€”
adjoinCommSemiringOfIsStarNormal πŸ“–CompOpβ€”
gi πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_eq πŸ“–mathematicalβ€”adjoin
SetLike.coe
StarSubalgebra
StarSubalgebra.setLike
β€”le_antisymm
adjoin_le
le_rfl
subset_adjoin
adjoin_eq_span πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
StarSubalgebra.toSubalgebra
adjoin
Submodule.span
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Submonoid.closure
Set
Set.instUnion
Star.star
InvolutiveStar.toStar
Set.instInvolutiveStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”adjoin_toSubalgebra
Algebra.adjoin_eq_span
adjoin_eq_starClosure_adjoin πŸ“–mathematicalβ€”adjoin
Subalgebra.starClosure
Algebra.adjoin
β€”StarSubalgebra.toSubalgebra_injective
Algebra.adjoin_union
Subalgebra.star_adjoin_comm
adjoin_induction πŸ“–β€”subset_adjoin
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
algebraMap_mem
StarSubalgebra
StarSubalgebra.setLike
AddSubmonoidWithOneClass.toOneMemClass
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubsemiringClass.addSubmonoidWithOneClass
StarSubalgebra.subsemiringClass
StarSubalgebra.smulMemClass
adjoin
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
SubsemiringClass.toAddSubmonoidClass
Distrib.toMul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SubsemiringClass.toSubmonoidClass
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
StarMemClass.star_mem
StarSubalgebra.starMemClass
SetLike.instMembership
β€”β€”subset_adjoin
algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
StarSubalgebra.subsemiringClass
StarSubalgebra.smulMemClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
StarMemClass.star_mem
StarSubalgebra.starMemClass
Algebra.adjoin_induction
Algebra.subset_adjoin
star_star
adjoin_induction_subtype πŸ“–β€”StarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
adjoin
subset_adjoin
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SubsemiringClass.toSemiring
StarSubalgebra.subsemiringClass
RingHom.instFunLike
algebraMap
StarSubalgebra.algebra
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toMul
Star.star
StarMemClass.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
StarSubalgebra.starMemClass
β€”β€”subset_adjoin
StarSubalgebra.subsemiringClass
StarSubalgebra.starMemClass
adjoin_induction
adjoin_inductionβ‚‚ πŸ“–β€”subset_adjoin
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
algebraMap_mem
StarSubalgebra
StarSubalgebra.setLike
AddSubmonoidWithOneClass.toOneMemClass
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubsemiringClass.addSubmonoidWithOneClass
StarSubalgebra.subsemiringClass
StarSubalgebra.smulMemClass
adjoin
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
SubsemiringClass.toAddSubmonoidClass
Distrib.toMul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SubsemiringClass.toSubmonoidClass
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
StarMemClass.star_mem
StarSubalgebra.starMemClass
SetLike.instMembership
β€”β€”subset_adjoin
algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
StarSubalgebra.subsemiringClass
StarSubalgebra.smulMemClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
StarMemClass.star_mem
StarSubalgebra.starMemClass
adjoin_induction
adjoin_le πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
StarSubalgebra
StarSubalgebra.setLike
Preorder.toLE
PartialOrder.toPreorder
StarSubalgebra.instPartialOrder
adjoin
β€”GaloisConnection.l_le
gc
adjoin_le_centralizer_centralizer πŸ“–mathematicalβ€”StarSubalgebra
Preorder.toLE
PartialOrder.toPreorder
StarSubalgebra.instPartialOrder
adjoin
StarSubalgebra.centralizer
SetLike.coe
StarSubalgebra.setLike
β€”StarSubalgebra.toSubalgebra_le_iff
StarSubalgebra.centralizer_toSubalgebra
adjoin_toSubalgebra
StarMemClass.star_coe_eq
StarSubalgebra.starMemClass
Set.union_self
Algebra.adjoin_le_centralizer_centralizer
adjoin_le_iff πŸ“–mathematicalβ€”StarSubalgebra
Preorder.toLE
PartialOrder.toPreorder
StarSubalgebra.instPartialOrder
adjoin
Set
Set.instHasSubset
SetLike.coe
StarSubalgebra.setLike
β€”gc
adjoin_mono πŸ“–mathematicalSet
Set.instHasSubset
StarSubalgebra
Preorder.toLE
PartialOrder.toPreorder
StarSubalgebra.instPartialOrder
adjoin
β€”GaloisConnection.monotone_l
gc
adjoin_nonUnitalStarSubalgebra πŸ“–mathematicalβ€”adjoin
SetLike.coe
NonUnitalStarSubalgebra
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Algebra.toModule
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
NonUnitalStarSubalgebra.instSetLike
NonUnitalStarAlgebra.adjoin
IsScalarTower.right
Algebra.to_smulCommClass
β€”le_antisymm
IsScalarTower.right
Algebra.to_smulCommClass
adjoin_le
NonUnitalStarAlgebra.adjoin_le_starAlgebra_adjoin
HasSubset.Subset.trans
Set.instIsTransSubset
NonUnitalStarAlgebra.subset_adjoin
subset_adjoin
adjoin_nonUnitalStarSubalgebra_eq_span πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
StarSubalgebra.toSubalgebra
adjoin
SetLike.coe
NonUnitalStarSubalgebra
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
NonUnitalStarSubalgebra.instSetLike
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Submodule.span
Set
Set.instSingletonSet
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
NonUnitalSubalgebra.toSubmodule
NonUnitalStarSubalgebra.toNonUnitalSubalgebra
β€”adjoin_eq_span
Submonoid.closure_eq_one_union
Submodule.span_union
IsScalarTower.right
Algebra.to_smulCommClass
NonUnitalStarAlgebra.adjoin_eq_span
NonUnitalStarAlgebra.adjoin_eq
adjoin_toSubalgebra πŸ“–mathematicalβ€”StarSubalgebra.toSubalgebra
adjoin
Algebra.adjoin
Set
Set.instUnion
Star.star
InvolutiveStar.toStar
Set.instInvolutiveStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”β€”
gc πŸ“–mathematicalβ€”GaloisConnection
Set
StarSubalgebra
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
StarSubalgebra.instPartialOrder
adjoin
SetLike.coe
StarSubalgebra.setLike
β€”StarSubalgebra.toSubalgebra_le_iff
adjoin_toSubalgebra
Algebra.adjoin_le_iff
StarSubalgebra.coe_toSubalgebra
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_union_left
Set.union_subset
StarMemClass.star_mem
StarSubalgebra.starMemClass
star_star
mem_adjoin_of_mem πŸ“–mathematicalSet
Set.instMembership
StarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
adjoin
β€”subset_adjoin
self_mem_adjoin_singleton πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
adjoin
Set
Set.instSingletonSet
β€”Algebra.subset_adjoin
Set.mem_union_left
Set.mem_singleton
star_self_mem_adjoin_singleton πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
adjoin
Set
Set.instSingletonSet
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”StarMemClass.star_mem
StarSubalgebra.starMemClass
self_mem_adjoin_singleton
star_subset_adjoin πŸ“–mathematicalβ€”Set
Set.instHasSubset
Star.star
InvolutiveStar.toStar
Set.instInvolutiveStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
SetLike.coe
StarSubalgebra
StarSubalgebra.setLike
adjoin
β€”HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_union_right
Algebra.subset_adjoin
subset_adjoin πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
StarSubalgebra
StarSubalgebra.setLike
adjoin
β€”HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_union_left
Algebra.subset_adjoin

StarSubalgebra

Definitions

NameCategoryTheorems
algebra πŸ“–CompOp
19 mathmath: StarAlgEquiv.ofInjective_symm_apply, inclusion_apply, NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, subtype_comp_inclusion, StarAlgEquiv.ofInjective_apply, StarAlgHom.coe_codRestrict, subtype_apply, isClosedEmbedding_inclusion, spectrum_eq, coe_subtype, starModule, mem_spectrum_iff, toSubalgebra_subtype, StarAlgHom.subtype_comp_codRestrict, inclusion_injective, cfcHom_eq_of_isStarNormal, StarAlgHom.injective_codRestrict, isEmbedding_inclusion, continuousFunctionalCalculus_map_id
centralizer πŸ“–CompOp
8 mathmath: centralizer_toSubalgebra, StarAlgebra.elemental.le_centralizer_centralizer, StarAlgebra.adjoin_le_centralizer_centralizer, topologicalClosure_adjoin_le_centralizer_centralizer, centralizer_le, coe_centralizer_centralizer, mem_centralizer_iff, coe_centralizer
comap πŸ“–CompOp
8 mathmath: comap_mono, mem_comap, gc_map_comap, comap_injective, comap_id, comap_comap, coe_comap, map_le_iff_le_comap
completeLattice πŸ“–CompOp
29 mathmath: coe_sInf, map_inf, mem_sup_left, inf_toSubalgebra, UnitAddTorus.mFourierSubalgebra_closure_eq_top, polynomialFunctions.starClosure_topologicalClosure, bot_toSubalgebra, mem_bot, mul_mem_sup, eq_top_iff, coe_bot, mem_iInf, toSubalgebra_eq_top, mem_top, map_sup, sInf_toSubalgebra, coe_inf, coe_top, fourierSubalgebra_closure_eq_top, coe_iInf, mem_sInf, StarAlgHom.range_eq_map_top, mem_sup_right, ContinuousMap.elemental_id_eq_top, mem_inf, ContinuousMap.starSubalgebra_topologicalClosure_eq_top_of_separatesPoints, map_iInf, iInf_toSubalgebra, top_toSubalgebra
copy πŸ“–CompOp
2 mathmath: coe_copy, copy_eq
inclusion πŸ“–CompOp
5 mathmath: inclusion_apply, subtype_comp_inclusion, isClosedEmbedding_inclusion, inclusion_injective, isEmbedding_inclusion
inhabited πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
22 mathmath: Subalgebra.starClosure_le, topologicalClosure_map_le, polynomialFunctions.starClosure_le_equalizer, StarAlgebra.elemental.le_of_mem, StarAlgebra.elemental.le_iff_mem, gc_map_comap, Subalgebra.starClosure_le_iff, StarAlgHom.adjoin_le_equalizer, StarAlgebra.elemental.le_centralizer_centralizer, StarAlgebra.adjoin_le_centralizer_centralizer, topologicalClosure_mono, toSubalgebra_le_iff, StarAlgebra.gc, topologicalClosure_adjoin_le_centralizer_centralizer, centralizer_le, StarAlgebra.adjoin_le_iff, map_le_iff_le_comap, StarAlgebra.adjoin_le, map_topologicalClosure_le, StarAlgebra.adjoin_mono, Unitization.starLift_range_le, le_topologicalClosure
map πŸ“–CompOp
19 mathmath: map_inf, coe_map, map_map, topologicalClosure_map_le, gc_map_comap, map_toSubalgebra, topologicalClosure_map, map_injective, map_sup, map_le_iff_le_comap, StarAlgHom.range_eq_map_top, map_topologicalClosure_le, mem_map, StarAlgHom.map_adjoin, map_iInf, map_id, BoundedContinuousFunction.separatesPoints_charPoly, map_mono, RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict
ofClass πŸ“–CompOp
1 mathmath: ofClass_carrier
setLike πŸ“–CompOp
90 mathmath: mem_toSubalgebra, coe_sInf, StarAlgEquiv.ofInjective_symm_apply, StarAlgHom.mem_equalizer, inclusion_apply, coe_map, range_le, smulMemClass, StarAlgebra.elemental.characterSpaceToSpectrum_coe, subringClass, StarAlgebra.adjoin_eq, NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, subtype_comp_inclusion, ofClass_carrier, StarAlgEquiv.ofInjective_apply, StarAlgebra.self_mem_adjoin_singleton, subsemiringClass, StarAlgebra.elemental.isClosed, mem_bot, mem_comap, BoundedContinuousFunction.mem_charPoly, StarAlgebra.elemental.le_iff_mem, subtype_apply, ext_iff, StarAlgebra.elemental.bijective_characterSpaceToSpectrum, isClosedEmbedding_inclusion, instIsTopologicalSemiringSubtypeMem, Subalgebra.mem_starClosure, VonNeumannAlgebra.coe_mk, eq_top_iff, VonNeumannAlgebra.mem_carrier, topologicalClosure_coe, spectrum_eq, ContinuousMap.adjoin_id_eq_span_one_union, coe_subtype, StarAlgebra.star_self_mem_adjoin_singleton, coe_bot, StarAlgebra.star_subset_adjoin, StarAlgebra.subset_adjoin, isClosed_topologicalClosure, StarAlgebra.elemental.le_centralizer_centralizer, StarAlgebra.elemental.instCompleteSpaceSubtypeMemStarSubalgebra, StarAlgebra.elemental.star_self_mem, mem_iInf, range_cfc_eq_range_cfcHom, StarAlgebra.adjoin_le_centralizer_centralizer, algebraMap_mem, mem_carrier, coe_mk, range_cfc_nnreal, mem_top, range_subset, StarAlgebra.elemental.self_mem, cfc_apply_mem_elemental, StarAlgebra.gc, starModule, topologicalClosure_adjoin_le_centralizer_centralizer, mem_spectrum_iff, coe_centralizer_centralizer, StarAlgebra.adjoin_le_iff, to_cstarRing, StarAlgebra.elemental.isClosedEmbedding_coe, coe_comap, toSubalgebra_subtype, ContinuousMap.adjoin_id_eq_span_one_add, mem_centralizer_iff, coe_inf, Subalgebra.coe_starClosure, VonNeumannAlgebra.coe_toStarSubalgebra, coe_isUnit, coe_top, coe_iInf, mem_sInf, instCanLiftSetCoeAndForallForallForallMemForallHAddForallForallForallForallHMulForallCoeRingHomAlgebraMapForallForallStar, coe_centralizer, inclusion_injective, ContinuousMap.ker_evalStarAlgHom_inter_adjoin_id, mem_inf, coe_toSubalgebra, StarAlgebra.elemental.continuous_characterSpaceToSpectrum, mem_map, cfcHom_eq_of_isStarNormal, range_cfc, starMemClass, isEmbedding_inclusion, continuousFunctionalCalculus_map_id, StarAlgebra.mem_adjoin_of_mem, cfcHom_apply_mem_elemental, instCompleteSpaceSubtypeMemTopologicalClosure, BoundedContinuousFunction.char_mem_charPoly
starRing πŸ“–CompOp
1 mathmath: to_cstarRing
subtype πŸ“–CompOp
6 mathmath: subtype_comp_inclusion, subtype_apply, coe_subtype, toSubalgebra_subtype, StarAlgHom.subtype_comp_codRestrict, cfcHom_eq_of_isStarNormal
toNonUnitalStarSubalgebra πŸ“–CompOp
5 mathmath: toNonUnitalStarSubalgebra_toStarSubalgebra, NonUnitalStarSubalgebra.toStarSubalgebra_toNonUnitalStarSubalgebra, one_mem_toNonUnitalStarSubalgebra, Unitization.starLift_range_le, NonUnitalStarAlgebra.adjoin_le_starAlgebra_adjoin
toSubalgebra πŸ“–CompOp
30 mathmath: mem_toSubalgebra, inf_toSubalgebra, UnitAddTorus.mFourierSubalgebra_coe, bot_toSubalgebra, toNonUnitalStarSubalgebra_toStarSubalgebra, StarAlgebra.adjoin_nonUnitalStarSubalgebra_eq_span, VonNeumannAlgebra.centralizer_centralizer', fourierSubalgebra_separatesPoints, centralizer_toSubalgebra, Subalgebra.starClosure_le_iff, map_toSubalgebra, toSubalgebra_injective, Subalgebra.starClosure_toSubalgebra, rangeS_le, mem_carrier, fourierSubalgebra_coe, toSubalgebra_le_iff, toSubalgebra_eq_top, UnitAddTorus.mFourierSubalgebra_separatesPoints, StarAlgebra.adjoin_toSubalgebra, toSubalgebra_subtype, toSubalgebra_inj, sInf_toSubalgebra, StarAlgebra.adjoin_eq_span, coe_toSubalgebra, BoundedContinuousFunction.separatesPoints_charPoly, iInf_toSubalgebra, topologicalClosure_toSubalgebra_comm, top_toSubalgebra, RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_mem πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
setLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”Subalgebra.algebraMap_mem'
bot_toSubalgebra πŸ“–mathematicalβ€”toSubalgebra
Bot.bot
StarSubalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Subalgebra
Algebra.instCompleteLatticeSubalgebra
β€”β€”
centralizer_le πŸ“–mathematicalSet
Set.instHasSubset
StarSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
β€”Set.centralizer_subset
Set.union_subset_union
Set.preimage_mono
centralizer_toSubalgebra πŸ“–mathematicalβ€”toSubalgebra
centralizer
Subalgebra.centralizer
Set
Set.instUnion
Star.star
InvolutiveStar.toStar
Set.instInvolutiveStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”β€”
coe_bot πŸ“–mathematicalβ€”SetLike.coe
StarSubalgebra
setLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”β€”
coe_centralizer πŸ“–mathematicalβ€”SetLike.coe
StarSubalgebra
setLike
centralizer
Set.centralizer
Set
Set.instUnion
Star.star
InvolutiveStar.toStar
Set.instInvolutiveStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
coe_centralizer_centralizer πŸ“–mathematicalβ€”SetLike.coe
StarSubalgebra
setLike
centralizer
Set.centralizer
Set
Set.instUnion
Star.star
InvolutiveStar.toStar
Set.instInvolutiveStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”coe_centralizer
StarMemClass.star_coe_eq
starMemClass
Set.union_self
coe_comap πŸ“–mathematicalβ€”SetLike.coe
StarSubalgebra
setLike
comap
Set.preimage
DFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarAlgHom.instFunLike
β€”β€”
coe_copy πŸ“–mathematicalSetLike.coe
StarSubalgebra
setLike
copyβ€”β€”
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
StarSubalgebra
setLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Set.iInter
β€”coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.iInter_iInter_eq'
coe_inf πŸ“–mathematicalβ€”SetLike.coe
StarSubalgebra
setLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Set
Set.instInter
β€”β€”
coe_map πŸ“–mathematicalβ€”SetLike.coe
StarSubalgebra
setLike
map
Set.image
DFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarAlgHom.instFunLike
β€”β€”
coe_mk πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
Subalgebra.toSubsemiring
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
SetLike.coe
StarSubalgebra
setLike
Subalgebra
Subalgebra.instSetLike
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
StarSubalgebra
setLike
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Set.iInter
Set
Set.instMembership
β€”sInf_image
coe_subtype πŸ“–mathematicalβ€”DFunLike.coe
StarAlgHom
StarSubalgebra
SetLike.instMembership
setLike
SubsemiringClass.toSemiring
subsemiringClass
algebra
StarMemClass.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
starMemClass
StarAlgHom.instFunLike
subtype
β€”subsemiringClass
starMemClass
coe_toSubalgebra πŸ“–mathematicalβ€”SetLike.coe
Subalgebra
Subalgebra.instSetLike
toSubalgebra
StarSubalgebra
setLike
β€”β€”
coe_top πŸ“–mathematicalβ€”SetLike.coe
StarSubalgebra
setLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.univ
β€”β€”
comap_comap πŸ“–mathematicalβ€”comap
StarAlgHom.comp
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”SetLike.coe_injective
Set.preimage_preimage
comap_id πŸ“–mathematicalβ€”comap
StarAlgHom.id
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”SetLike.coe_injective
Set.preimage_id
comap_injective πŸ“–mathematicalDFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarAlgHom.instFunLike
StarSubalgebra
comap
β€”ext
SetLike.ext_iff
comap_mono πŸ“–mathematicalStarSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comapβ€”Set.preimage_mono
copy_eq πŸ“–mathematicalSetLike.coe
StarSubalgebra
setLike
copyβ€”SetLike.coe_injective
eq_top_iff πŸ“–mathematicalβ€”Top.top
StarSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
SetLike.instMembership
setLike
β€”mem_top
ext
ext πŸ“–β€”StarSubalgebra
SetLike.instMembership
setLike
β€”β€”SetLike.ext
ext_iff πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
setLike
β€”ext
gc_map_comap πŸ“–mathematicalβ€”GaloisConnection
StarSubalgebra
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”map_le_iff_le_comap
iInf_toSubalgebra πŸ“–mathematicalβ€”toSubalgebra
iInf
StarSubalgebra
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Subalgebra
Algebra.instCompleteLatticeSubalgebra
β€”SetLike.coe_injective
coe_iInf
Algebra.coe_iInf
inclusion_apply πŸ“–mathematicalStarSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
DFunLike.coe
StarAlgHom
SetLike.instMembership
setLike
SubsemiringClass.toSemiring
subsemiringClass
algebra
StarMemClass.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
starMemClass
StarAlgHom.instFunLike
inclusion
Subtype.map
β€”subsemiringClass
starMemClass
inclusion_injective πŸ“–mathematicalStarSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
setLike
DFunLike.coe
StarAlgHom
SubsemiringClass.toSemiring
subsemiringClass
algebra
StarMemClass.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
starMemClass
StarAlgHom.instFunLike
inclusion
β€”Set.inclusion_injective
inf_toSubalgebra πŸ“–mathematicalβ€”toSubalgebra
StarSubalgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Subalgebra
Algebra.instCompleteLatticeSubalgebra
β€”Subalgebra.ext
instCanLiftSetCoeAndForallForallForallMemForallHAddForallForallForallForallHMulForallCoeRingHomAlgebraMapForallForallStar πŸ“–mathematicalβ€”CanLift
Set
StarSubalgebra
SetLike.coe
setLike
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
map_iInf πŸ“–mathematicalDFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarAlgHom.instFunLike
map
iInf
StarSubalgebra
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”SetLike.coe_injective
coe_iInf
Set.InjOn.image_iInter_eq
Set.injOn_of_injective
map_id πŸ“–mathematicalβ€”map
StarAlgHom.id
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”SetLike.coe_injective
Set.image_id
map_inf πŸ“–mathematicalDFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarAlgHom.instFunLike
map
StarSubalgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”SetLike.coe_injective
Set.image_inter
map_injective πŸ“–mathematicalDFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarAlgHom.instFunLike
StarSubalgebra
map
β€”ext
Set.ext_iff
Set.image_injective
Set.ext
SetLike.ext_iff
map_le_iff_le_comap πŸ“–mathematicalβ€”StarSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”Set.image_subset_iff
map_map πŸ“–mathematicalβ€”map
StarAlgHom.comp
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”SetLike.coe_injective
Set.image_image
map_mono πŸ“–mathematicalStarSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapβ€”Set.image_mono
map_sup πŸ“–mathematicalβ€”map
StarSubalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”GaloisConnection.l_sup
gc_map_comap
map_toSubalgebra πŸ“–mathematicalβ€”toSubalgebra
map
Subalgebra.map
StarAlgHom.toAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”SetLike.coe_injective
mem_bot πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
setLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set
Set.instMembership
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”β€”
mem_carrier πŸ“–mathematicalβ€”Set
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
Subalgebra.toSubsemiring
toSubalgebra
StarSubalgebra
SetLike.instMembership
setLike
β€”β€”
mem_centralizer_iff πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
setLike
centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
β€”Set.centralizer_union
mem_comap πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
setLike
comap
DFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarAlgHom.instFunLike
β€”β€”
mem_iInf πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
setLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”β€”
mem_inf πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
setLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”β€”
mem_map πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
setLike
map
DFunLike.coe
StarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarAlgHom.instFunLike
β€”Subsemiring.mem_map
mem_sInf πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
setLike
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”coe_sInf
mem_sup_left πŸ“–mathematicalStarSubalgebra
SetLike.instMembership
setLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”le_sup_left
mem_sup_right πŸ“–mathematicalStarSubalgebra
SetLike.instMembership
setLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”le_sup_right
mem_toSubalgebra πŸ“–mathematicalβ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
toSubalgebra
StarSubalgebra
setLike
β€”β€”
mem_top πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
setLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Set.mem_univ
mul_mem_sup πŸ“–mathematicalStarSubalgebra
SetLike.instMembership
setLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
subsemiringClass
mem_sup_left
mem_sup_right
ofClass_carrier πŸ“–mathematicalβ€”SetLike.coe
StarSubalgebra
setLike
ofClass
β€”β€”
one_mem_toNonUnitalStarSubalgebra πŸ“–mathematicalβ€”NonUnitalStarSubalgebra
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
SetLike.instMembership
NonUnitalStarSubalgebra.instSetLike
toNonUnitalStarSubalgebra
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Submonoid.one_mem'
rangeS_le πŸ“–mathematicalβ€”Subsemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
Subsemiring.instPartialOrder
RingHom.rangeS
CommSemiring.toSemiring
algebraMap
Subalgebra.toSubsemiring
toSubalgebra
β€”algebraMap_mem
range_le πŸ“–mathematicalβ€”Set
Set.instLE
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
SetLike.coe
StarSubalgebra
setLike
β€”range_subset
range_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
SetLike.coe
StarSubalgebra
setLike
β€”algebraMap_mem
sInf_toSubalgebra πŸ“–mathematicalβ€”toSubalgebra
InfSet.sInf
StarSubalgebra
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Subalgebra
Algebra.instCompleteLatticeSubalgebra
Set.image
β€”SetLike.coe_injective
coe_sInf
Algebra.coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.biInter_and'
Set.iInter_iInter_eq_right
smulMemClass πŸ“–mathematicalβ€”SMulMemClass
StarSubalgebra
Algebra.toSMul
setLike
β€”SMulMemClass.smul_mem
Subalgebra.instSMulMemClass
smul_mem πŸ“–mathematicalStarSubalgebra
SetLike.instMembership
setLike
Algebra.toSMulβ€”MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
subsemiringClass
algebraMap_mem
Algebra.smul_def
starMemClass πŸ“–mathematicalβ€”StarMemClass
StarSubalgebra
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
setLike
β€”star_mem'
starModule πŸ“–mathematicalβ€”StarModule
StarSubalgebra
SetLike.instMembership
setLike
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
StarRing.toStarAddMonoid
StarMemClass.instStar
starMemClass
Algebra.toSMul
SubsemiringClass.toSemiring
subsemiringClass
algebra
β€”starMemClass
subsemiringClass
StarModule.star_smul
star_mem' πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
Subalgebra.toSubsemiring
toSubalgebra
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
β€”β€”
subringClass πŸ“–mathematicalβ€”SubringClass
StarSubalgebra
CommRing.toCommSemiring
Ring.toSemiring
setLike
β€”subsemiringClass
NegMemClass.neg_mem
SubringClass.toNegMemClass
Subalgebra.instSubringClass
subsemiringClass πŸ“–mathematicalβ€”SubsemiringClass
StarSubalgebra
Semiring.toNonAssocSemiring
setLike
β€”Subsemigroup.mul_mem'
Submonoid.one_mem'
Subsemiring.add_mem'
Subsemiring.zero_mem'
subtype_apply πŸ“–mathematicalβ€”DFunLike.coe
StarAlgHom
StarSubalgebra
SetLike.instMembership
setLike
SubsemiringClass.toSemiring
subsemiringClass
algebra
StarMemClass.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
starMemClass
StarAlgHom.instFunLike
subtype
β€”subsemiringClass
starMemClass
subtype_comp_inclusion πŸ“–mathematicalStarSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
StarAlgHom.comp
SetLike.instMembership
setLike
SubsemiringClass.toSemiring
subsemiringClass
algebra
StarMemClass.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
starMemClass
subtype
inclusion
β€”subsemiringClass
starMemClass
toNonUnitalStarSubalgebra_toStarSubalgebra πŸ“–mathematicalβ€”NonUnitalStarSubalgebra.toStarSubalgebra
toNonUnitalStarSubalgebra
Submonoid.one_mem'
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Subsemiring.toSubmonoid
Subalgebra.toSubsemiring
toSubalgebra
β€”Submonoid.one_mem'
toSubalgebra_eq_top πŸ“–mathematicalβ€”toSubalgebra
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
StarSubalgebra
completeLattice
β€”toSubalgebra_injective
top_toSubalgebra
toSubalgebra_inj πŸ“–mathematicalβ€”toSubalgebraβ€”toSubalgebra_injective
toSubalgebra_injective πŸ“–mathematicalβ€”StarSubalgebra
Subalgebra
toSubalgebra
β€”ext
mem_toSubalgebra
toSubalgebra_le_iff πŸ“–mathematicalβ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
toSubalgebra
StarSubalgebra
instPartialOrder
β€”β€”
toSubalgebra_subtype πŸ“–mathematicalβ€”Subalgebra.val
toSubalgebra
StarAlgHom.toAlgHom
StarSubalgebra
SetLike.instMembership
setLike
SubsemiringClass.toSemiring
subsemiringClass
algebra
StarMemClass.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
starMemClass
subtype
β€”β€”
top_toSubalgebra πŸ“–mathematicalβ€”toSubalgebra
Top.top
StarSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Subalgebra
Algebra.instCompleteLatticeSubalgebra
β€”Subalgebra.ext

Subalgebra

Definitions

NameCategoryTheorems
involutiveStar πŸ“–CompOp
9 mathmath: star_adjoin_comm, mem_starClosure, coe_star, starClosure_toSubalgebra, topologicalClosure_star_comm, star_mem_star_iff, coe_starClosure, mem_star_iff, star_mono
starClosure πŸ“–CompOp
10 mathmath: starClosure_le, polynomialFunctions.starClosure_topologicalClosure, polynomialFunctions.starClosure_le_equalizer, polynomialFunctions.starClosure_eq_adjoin_X, mem_starClosure, starClosure_eq_adjoin, starClosure_le_iff, starClosure_toSubalgebra, coe_starClosure, StarAlgebra.adjoin_eq_starClosure_adjoin

Theorems

NameKindAssumesProvesValidatesDepends On
coe_star πŸ“–mathematicalβ€”SetLike.coe
Subalgebra
instSetLike
Star.star
InvolutiveStar.toStar
involutiveStar
Set
Set.star
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”β€”
coe_starClosure πŸ“–mathematicalβ€”SetLike.coe
StarSubalgebra
StarSubalgebra.setLike
starClosure
Subalgebra
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
Star.star
InvolutiveStar.toStar
involutiveStar
β€”β€”
mem_starClosure πŸ“–mathematicalβ€”StarSubalgebra
SetLike.instMembership
StarSubalgebra.setLike
starClosure
Subalgebra
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
Star.star
InvolutiveStar.toStar
involutiveStar
β€”β€”
mem_star_iff πŸ“–mathematicalβ€”Subalgebra
SetLike.instMembership
instSetLike
Star.star
InvolutiveStar.toStar
involutiveStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”β€”
starClosure_eq_adjoin πŸ“–mathematicalβ€”starClosure
StarAlgebra.adjoin
SetLike.coe
Subalgebra
instSetLike
β€”le_antisymm
starClosure_le_iff
StarAlgebra.subset_adjoin
StarAlgebra.adjoin_le
le_sup_left
starClosure_le πŸ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
StarSubalgebra.toSubalgebra
StarSubalgebra
StarSubalgebra.instPartialOrder
starClosure
β€”StarSubalgebra.toSubalgebra_le_iff
sup_le
StarMemClass.star_mem
StarSubalgebra.starMemClass
mem_star_iff
star_star
starClosure_le_iff πŸ“–mathematicalβ€”StarSubalgebra
Preorder.toLE
PartialOrder.toPreorder
StarSubalgebra.instPartialOrder
starClosure
Subalgebra
instPartialOrder
StarSubalgebra.toSubalgebra
β€”LE.le.trans
le_sup_left
starClosure_le
starClosure_toSubalgebra πŸ“–mathematicalβ€”StarSubalgebra.toSubalgebra
starClosure
Subalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
Star.star
InvolutiveStar.toStar
involutiveStar
β€”β€”
star_adjoin_comm πŸ“–mathematicalβ€”Star.star
Subalgebra
InvolutiveStar.toStar
involutiveStar
Algebra.adjoin
Set
Set.star
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”Algebra.adjoin_le
Algebra.subset_adjoin
le_antisymm
star_star
star_mono
star_mem_star_iff πŸ“–mathematicalβ€”Subalgebra
SetLike.instMembership
instSetLike
Star.star
InvolutiveStar.toStar
involutiveStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”star_star
star_mono πŸ“–mathematicalβ€”Monotone
Subalgebra
PartialOrder.toPreorder
instPartialOrder
Star.star
InvolutiveStar.toStar
involutiveStar
β€”β€”

---

← Back to Index