Documentation

Mathlib.Algebra.Star.Subalgebra

Star subalgebras #

A *-subalgebra is a subalgebra of a *-algebra which is closed under *.

The centralizer of a *-closed set is a *-subalgebra.

structure StarSubalgebra (R : Type u) (A : Type v) [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] extends Subalgebra R A :

A *-subalgebra is a subalgebra of a *-algebra which is closed under *.

Instances For
    instance StarSubalgebra.setLike {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] :
    Equations
      def StarSubalgebra.ofClass {S : Type u_6} {R : Type u_7} {A : Type u_8} [CommSemiring R] [Semiring A] [Algebra R A] [StarRing R] [StarRing A] [StarModule R A] [SetLike S A] [SubsemiringClass S A] [SMulMemClass S R A] [StarMemClass S A] (s : S) :

      The actual StarSubalgebra obtained from an element of a type satisfying SubsemiringClass, SMulMemClass and StarMemClass.

      Equations
        Instances For
          @[simp]
          theorem StarSubalgebra.ofClass_carrier {S : Type u_6} {R : Type u_7} {A : Type u_8} [CommSemiring R] [Semiring A] [Algebra R A] [StarRing R] [StarRing A] [StarModule R A] [SetLike S A] [SubsemiringClass S A] [SMulMemClass S R A] [StarMemClass S A] (s : S) :
          ↑(ofClass s) = ↑s
          @[instance 100]
          instance StarSubalgebra.instCanLiftSetCoeAndForallForallForallMemForallHAddForallForallForallForallHMulForallCoeRingHomAlgebraMapForallForallStar {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] :
          CanLift (Set A) (StarSubalgebra R A) SetLike.coe fun (s : Set A) => (βˆ€ {x y : A}, x ∈ s β†’ y ∈ s β†’ x + y ∈ s) ∧ (βˆ€ {x y : A}, x ∈ s β†’ y ∈ s β†’ x * y ∈ s) ∧ (βˆ€ (r : R), (algebraMap R A) r ∈ s) ∧ βˆ€ {x : A}, x ∈ s β†’ star x ∈ s
          instance StarSubalgebra.starRing {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (s : StarSubalgebra R A) :
          StarRing β†₯s
          Equations
            instance StarSubalgebra.algebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (s : StarSubalgebra R A) :
            Algebra R β†₯s
            Equations
              instance StarSubalgebra.starModule {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (s : StarSubalgebra R A) :
              StarModule R β†₯s

              Turn a StarSubalgebra into a NonUnitalStarSubalgebra by forgetting that it contains 1.

              Equations
                Instances For
                  theorem StarSubalgebra.ext {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S T : StarSubalgebra R A} (h : βˆ€ (x : A), x ∈ S ↔ x ∈ T) :
                  S = T
                  theorem StarSubalgebra.ext_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S T : StarSubalgebra R A} :
                  S = T ↔ βˆ€ (x : A), x ∈ S ↔ x ∈ T
                  @[simp]
                  theorem StarSubalgebra.coe_mk {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : Subalgebra R A) (h : βˆ€ {a : A}, a ∈ S.carrier β†’ star a ∈ S.carrier) :
                  ↑{ toSubalgebra := S, star_mem' := h } = ↑S
                  @[simp]
                  theorem StarSubalgebra.mem_toSubalgebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S : StarSubalgebra R A} {x : A} :
                  @[simp]
                  theorem StarSubalgebra.coe_toSubalgebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
                  ↑S.toSubalgebra = ↑S
                  theorem StarSubalgebra.toSubalgebra_le_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S₁ Sβ‚‚ : StarSubalgebra R A} :
                  S₁.toSubalgebra ≀ Sβ‚‚.toSubalgebra ↔ S₁ ≀ Sβ‚‚
                  def StarSubalgebra.copy {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) (s : Set A) (hs : s = ↑S) :

                  Copy of a star subalgebra with a new carrier equal to the old one. Useful to fix definitional equalities.

                  Equations
                    Instances For
                      @[simp]
                      theorem StarSubalgebra.coe_copy {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) (s : Set A) (hs : s = ↑S) :
                      ↑(S.copy s hs) = s
                      theorem StarSubalgebra.copy_eq {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) (s : Set A) (hs : s = ↑S) :
                      S.copy s hs = S
                      theorem StarSubalgebra.algebraMap_mem {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) (r : R) :
                      (algebraMap R A) r ∈ S
                      theorem StarSubalgebra.range_subset {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
                      Set.range ⇑(algebraMap R A) βŠ† ↑S
                      theorem StarSubalgebra.range_le {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
                      Set.range ⇑(algebraMap R A) ≀ ↑S
                      theorem StarSubalgebra.smul_mem {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) {x : A} (hx : x ∈ S) (r : R) :
                      def StarSubalgebra.subtype {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :

                      Embedding of a subalgebra into the algebra.

                      Equations
                        Instances For
                          @[simp]
                          theorem StarSubalgebra.coe_subtype {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
                          theorem StarSubalgebra.subtype_apply {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) (x : β†₯S) :
                          S.subtype x = ↑x
                          def StarSubalgebra.inclusion {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S₁ Sβ‚‚ : StarSubalgebra R A} (h : S₁ ≀ Sβ‚‚) :
                          β†₯S₁ →⋆ₐ[R] β†₯Sβ‚‚

                          The inclusion map between StarSubalgebras given by Subtype.map id as a StarAlgHom.

                          Equations
                            Instances For
                              @[simp]
                              theorem StarSubalgebra.inclusion_apply {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S₁ Sβ‚‚ : StarSubalgebra R A} (h : S₁ ≀ Sβ‚‚) (a✝ : β†₯S₁) :
                              (inclusion h) a✝ = Subtype.map id h a✝
                              theorem StarSubalgebra.inclusion_injective {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S₁ Sβ‚‚ : StarSubalgebra R A} (h : S₁ ≀ Sβ‚‚) :
                              @[simp]
                              theorem StarSubalgebra.subtype_comp_inclusion {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {S₁ Sβ‚‚ : StarSubalgebra R A} (h : S₁ ≀ Sβ‚‚) :
                              Sβ‚‚.subtype.comp (inclusion h) = S₁.subtype
                              def StarSubalgebra.map {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R A) :

                              Transport a star subalgebra via a star algebra homomorphism.

                              Equations
                                Instances For
                                  theorem StarSubalgebra.map_mono {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {S₁ Sβ‚‚ : StarSubalgebra R A} {f : A →⋆ₐ[R] B} :
                                  S₁ ≀ Sβ‚‚ β†’ map f S₁ ≀ map f Sβ‚‚
                                  @[simp]
                                  theorem StarSubalgebra.map_id {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
                                  map (StarAlgHom.id R A) S = S
                                  theorem StarSubalgebra.map_map {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] [Semiring C] [StarRing C] [Algebra R C] [StarModule R C] (S : StarSubalgebra R A) (g : B →⋆ₐ[R] C) (f : A →⋆ₐ[R] B) :
                                  map g (map f S) = map (g.comp f) S
                                  @[simp]
                                  theorem StarSubalgebra.mem_map {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {S : StarSubalgebra R A} {f : A →⋆ₐ[R] B} {y : B} :
                                  y ∈ map f S ↔ βˆƒ x ∈ S, f x = y
                                  @[simp]
                                  theorem StarSubalgebra.coe_map {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (S : StarSubalgebra R A) (f : A →⋆ₐ[R] B) :
                                  ↑(map f S) = ⇑f '' ↑S
                                  def StarSubalgebra.comap {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R B) :

                                  Preimage of a star subalgebra under a star algebra homomorphism.

                                  Equations
                                    Instances For
                                      theorem StarSubalgebra.comap_mono {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {S₁ Sβ‚‚ : StarSubalgebra R B} {f : A →⋆ₐ[R] B} :
                                      S₁ ≀ Sβ‚‚ β†’ comap f S₁ ≀ comap f Sβ‚‚
                                      @[simp]
                                      theorem StarSubalgebra.comap_id {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) :
                                      theorem StarSubalgebra.comap_comap {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] [Semiring C] [StarRing C] [Algebra R C] [StarModule R C] (S : StarSubalgebra R C) (g : B →⋆ₐ[R] C) (f : A →⋆ₐ[R] B) :
                                      comap f (comap g S) = comap (g.comp f) S
                                      @[simp]
                                      theorem StarSubalgebra.mem_comap {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (S : StarSubalgebra R B) (f : A →⋆ₐ[R] B) (x : A) :
                                      @[simp]
                                      theorem StarSubalgebra.coe_comap {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (S : StarSubalgebra R B) (f : A →⋆ₐ[R] B) :
                                      ↑(comap f S) = ⇑f ⁻¹' ↑S
                                      def StarSubalgebra.centralizer (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (s : Set A) :

                                      The centralizer, or commutant, of the star-closure of a set as a star subalgebra.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem StarSubalgebra.coe_centralizer (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (s : Set A) :
                                          ↑(centralizer R s) = (s βˆͺ star s).centralizer
                                          theorem StarSubalgebra.mem_centralizer_iff (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {s : Set A} {z : A} :
                                          z ∈ centralizer R s ↔ βˆ€ g ∈ s, g * z = z * g ∧ star g * z = z * star g

                                          The star closure of a subalgebra #

                                          instance Subalgebra.involutiveStar {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] :

                                          The pointwise star of a subalgebra is a subalgebra.

                                          Equations
                                            @[simp]
                                            theorem Subalgebra.mem_star_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Subalgebra R A) (x : A) :
                                            theorem Subalgebra.star_mem_star_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Subalgebra R A) (x : A) :
                                            @[simp]
                                            theorem Subalgebra.coe_star {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Subalgebra R A) :
                                            ↑(star S) = star ↑S
                                            theorem Subalgebra.star_adjoin_comm (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (s : Set A) :

                                            The star operation on Subalgebra commutes with Algebra.adjoin.

                                            def Subalgebra.starClosure {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Subalgebra R A) :

                                            The StarSubalgebra obtained from S : Subalgebra R A by taking the smallest subalgebra containing both S and star S.

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem Subalgebra.coe_starClosure {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Subalgebra R A) :
                                                ↑S.starClosure = ↑(S βŠ” star S)
                                                @[simp]
                                                theorem Subalgebra.mem_starClosure {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Subalgebra R A) {x : A} :
                                                theorem Subalgebra.starClosure_le {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S₁ : Subalgebra R A} {Sβ‚‚ : StarSubalgebra R A} (h : S₁ ≀ Sβ‚‚.toSubalgebra) :
                                                S₁.starClosure ≀ Sβ‚‚
                                                theorem Subalgebra.starClosure_le_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S₁ : Subalgebra R A} {Sβ‚‚ : StarSubalgebra R A} :
                                                S₁.starClosure ≀ Sβ‚‚ ↔ S₁ ≀ Sβ‚‚.toSubalgebra

                                                The star subalgebra generated by a set #

                                                def StarAlgebra.adjoin (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (s : Set A) :

                                                The minimal star subalgebra that contains s.

                                                Equations
                                                  Instances For
                                                    @[simp]
                                                    theorem StarAlgebra.subset_adjoin (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (s : Set A) :
                                                    s βŠ† ↑(adjoin R s)
                                                    @[simp]
                                                    theorem StarAlgebra.star_subset_adjoin (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (s : Set A) :
                                                    star s βŠ† ↑(adjoin R s)
                                                    theorem StarAlgebra.mem_adjoin_of_mem (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {s : Set A} {x : A} (hx : x ∈ s) :
                                                    @[simp]
                                                    theorem StarAlgebra.self_mem_adjoin_singleton (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (x : A) :

                                                    Galois insertion between adjoin and coe.

                                                    Equations
                                                      Instances For
                                                        theorem StarAlgebra.adjoin_le {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : StarSubalgebra R A} {s : Set A} (hs : s βŠ† ↑S) :
                                                        @[simp]
                                                        theorem StarAlgebra.adjoin_le_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : StarSubalgebra R A} {s : Set A} :
                                                        adjoin R s ≀ S ↔ s βŠ† ↑S
                                                        theorem StarAlgebra.adjoin_mono {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {s t : Set A} (H : s βŠ† t) :
                                                        @[simp]
                                                        theorem StarAlgebra.adjoin_eq {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : StarSubalgebra R A) :
                                                        adjoin R ↑S = S
                                                        theorem StarAlgebra.adjoin_induction {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {s : Set A} {p : (x : A) β†’ x ∈ adjoin R s β†’ Prop} (mem : βˆ€ (x : A) (h : x ∈ s), p x β‹―) (algebraMap : βˆ€ (r : R), p ((algebraMap R A) r) β‹―) (add : βˆ€ (x y : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s), p x hx β†’ p y hy β†’ p (x + y) β‹―) (mul : βˆ€ (x y : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s), p x hx β†’ p y hy β†’ p (x * y) β‹―) (star : βˆ€ (x : A) (hx : x ∈ adjoin R s), p x hx β†’ p (star x) β‹―) {a : A} (ha : a ∈ adjoin R s) :
                                                        p a ha

                                                        If some predicate holds for all x ∈ (s : Set A) and this predicate is closed under the algebraMap, addition, multiplication and star operations, then it holds for a ∈ adjoin R s.

                                                        theorem StarAlgebra.adjoin_inductionβ‚‚ {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {s : Set A} {p : (x y : A) β†’ x ∈ adjoin R s β†’ y ∈ adjoin R s β†’ Prop} (mem_mem : βˆ€ (x y : A) (hx : x ∈ s) (hy : y ∈ s), p x y β‹― β‹―) (algebraMap_both : βˆ€ (r₁ rβ‚‚ : R), p ((algebraMap R A) r₁) ((algebraMap R A) rβ‚‚) β‹― β‹―) (algebraMap_left : βˆ€ (r : R) (x : A) (hx : x ∈ s), p ((algebraMap R A) r) x β‹― β‹―) (algebraMap_right : βˆ€ (r : R) (x : A) (hx : x ∈ s), p x ((algebraMap R A) r) β‹― β‹―) (add_left : βˆ€ (x y z : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) (hz : z ∈ adjoin R s), p x z hx hz β†’ p y z hy hz β†’ p (x + y) z β‹― hz) (add_right : βˆ€ (x y z : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) (hz : z ∈ adjoin R s), p x y hx hy β†’ p x z hx hz β†’ p x (y + z) hx β‹―) (mul_left : βˆ€ (x y z : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) (hz : z ∈ adjoin R s), p x z hx hz β†’ p y z hy hz β†’ p (x * y) z β‹― hz) (mul_right : βˆ€ (x y z : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s) (hz : z ∈ adjoin R s), p x y hx hy β†’ p x z hx hz β†’ p x (y * z) hx β‹―) (star_left : βˆ€ (x y : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s), p x y hx hy β†’ p (star x) y β‹― hy) (star_right : βˆ€ (x y : A) (hx : x ∈ adjoin R s) (hy : y ∈ adjoin R s), p x y hx hy β†’ p x (star y) hx β‹―) {a b : A} (ha : a ∈ adjoin R s) (hb : b ∈ adjoin R s) :
                                                        p a b ha hb
                                                        theorem StarAlgebra.adjoin_induction_subtype {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {s : Set A} {p : β†₯(adjoin R s) β†’ Prop} (a : β†₯(adjoin R s)) (mem : βˆ€ (x : A) (h : x ∈ s), p ⟨x, β‹―βŸ©) (algebraMap : βˆ€ (r : R), p ((algebraMap R β†₯(adjoin R s)) r)) (add : βˆ€ (x y : β†₯(adjoin R s)), p x β†’ p y β†’ p (x + y)) (mul : βˆ€ (x y : β†₯(adjoin R s)), p x β†’ p y β†’ p (x * y)) (star : βˆ€ (x : β†₯(adjoin R s)), p x β†’ p (star x)) :
                                                        p a

                                                        The difference with StarSubalgebra.adjoin_induction is that this acts on the subtype.

                                                        @[reducible, inline]
                                                        abbrev StarAlgebra.adjoinCommSemiringOfComm (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {s : Set A} (hcomm : βˆ€ a ∈ s, βˆ€ b ∈ s, a * b = b * a) (hcomm_star : βˆ€ a ∈ s, βˆ€ b ∈ s, a * star b = star b * a) :
                                                        CommSemiring β†₯(adjoin R s)

                                                        If all elements of s : Set A commute pairwise and also commute pairwise with elements of star s, then StarSubalgebra.adjoin R s is commutative. See note [reducible non-instances].

                                                        Equations
                                                          Instances For
                                                            @[reducible, inline]
                                                            abbrev StarAlgebra.adjoinCommRingOfComm (R : Type u) {A : Type v} [CommRing R] [StarRing R] [Ring A] [Algebra R A] [StarRing A] [StarModule R A] {s : Set A} (hcomm : βˆ€ a ∈ s, βˆ€ b ∈ s, a * b = b * a) (hcomm_star : βˆ€ a ∈ s, βˆ€ b ∈ s, a * star b = star b * a) :
                                                            CommRing β†₯(adjoin R s)

                                                            If all elements of s : Set A commute pairwise and also commute pairwise with elements of star s, then StarSubalgebra.adjoin R s is commutative. See note [reducible non-instances].

                                                            Equations
                                                              Instances For
                                                                instance StarAlgebra.adjoinCommSemiringOfIsStarNormal (R : Type u_2) {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (x : A) [IsStarNormal x] :
                                                                CommSemiring β†₯(adjoin R {x})

                                                                The star subalgebra StarSubalgebra.adjoin R {x} generated by a single x : A is commutative if x is normal.

                                                                Equations
                                                                  instance StarAlgebra.adjoinCommRingOfIsStarNormal (R : Type u) {A : Type v} [CommRing R] [StarRing R] [Ring A] [Algebra R A] [StarRing A] [StarModule R A] (x : A) [IsStarNormal x] :
                                                                  CommRing β†₯(adjoin R {x})

                                                                  The star subalgebra StarSubalgebra.adjoin R {x} generated by a single x : A is commutative if x is normal.

                                                                  Equations

                                                                    Complete lattice structure #

                                                                    @[simp]
                                                                    theorem StarSubalgebra.coe_top {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] :
                                                                    @[simp]
                                                                    theorem StarSubalgebra.mem_top {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {x : A} :
                                                                    theorem StarSubalgebra.mem_sup_left {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S T : StarSubalgebra R A} {x : A} :
                                                                    x ∈ S β†’ x ∈ S βŠ” T
                                                                    theorem StarSubalgebra.mem_sup_right {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S T : StarSubalgebra R A} {x : A} :
                                                                    x ∈ T β†’ x ∈ S βŠ” T
                                                                    theorem StarSubalgebra.mul_mem_sup {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S T : StarSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :
                                                                    x * y ∈ S βŠ” T
                                                                    theorem StarSubalgebra.map_sup {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (S T : StarSubalgebra R A) :
                                                                    map f (S βŠ” T) = map f S βŠ” map f T
                                                                    theorem StarSubalgebra.map_inf {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (hf : Function.Injective ⇑f) (S T : StarSubalgebra R A) :
                                                                    map f (S βŠ“ T) = map f S βŠ“ map f T
                                                                    @[simp]
                                                                    theorem StarSubalgebra.coe_inf {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S T : StarSubalgebra R A) :
                                                                    ↑(S βŠ“ T) = ↑S ∩ ↑T
                                                                    @[simp]
                                                                    theorem StarSubalgebra.mem_inf {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S T : StarSubalgebra R A} {x : A} :
                                                                    x ∈ S βŠ“ T ↔ x ∈ S ∧ x ∈ T
                                                                    @[simp]
                                                                    theorem StarSubalgebra.inf_toSubalgebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S T : StarSubalgebra R A) :
                                                                    (S βŠ“ T).toSubalgebra = S.toSubalgebra βŠ“ T.toSubalgebra
                                                                    @[simp]
                                                                    theorem StarSubalgebra.coe_sInf {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] (S : Set (StarSubalgebra R A)) :
                                                                    ↑(sInf S) = β‹‚ s ∈ S, ↑s
                                                                    @[simp]
                                                                    theorem StarSubalgebra.mem_sInf {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : Set (StarSubalgebra R A)} {x : A} :
                                                                    x ∈ sInf S ↔ βˆ€ p ∈ S, x ∈ p
                                                                    @[simp]
                                                                    theorem StarSubalgebra.coe_iInf {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {ΞΉ : Sort u_5} {S : ΞΉ β†’ StarSubalgebra R A} :
                                                                    ↑(β¨… (i : ΞΉ), S i) = β‹‚ (i : ΞΉ), ↑(S i)
                                                                    @[simp]
                                                                    theorem StarSubalgebra.mem_iInf {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {ΞΉ : Sort u_5} {S : ΞΉ β†’ StarSubalgebra R A} {x : A} :
                                                                    x ∈ β¨… (i : ΞΉ), S i ↔ βˆ€ (i : ΞΉ), x ∈ S i
                                                                    theorem StarSubalgebra.map_iInf {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] {ΞΉ : Sort u_5} [Nonempty ΞΉ] (f : A →⋆ₐ[R] B) (hf : Function.Injective ⇑f) (s : ΞΉ β†’ StarSubalgebra R A) :
                                                                    map f (iInf s) = β¨… (i : ΞΉ), map f (s i)
                                                                    @[simp]
                                                                    theorem StarSubalgebra.iInf_toSubalgebra {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {ΞΉ : Sort u_5} (S : ΞΉ β†’ StarSubalgebra R A) :
                                                                    (β¨… (i : ΞΉ), S i).toSubalgebra = β¨… (i : ΞΉ), (S i).toSubalgebra
                                                                    @[simp]
                                                                    theorem StarSubalgebra.coe_bot {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] :
                                                                    ↑βŠ₯ = Set.range ⇑(algebraMap R A)
                                                                    theorem StarSubalgebra.eq_top_iff {R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] {S : StarSubalgebra R A} :
                                                                    S = ⊀ ↔ βˆ€ (x : A), x ∈ S
                                                                    theorem StarAlgHom.ext_adjoin {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R A] {s : Set A} [FunLike F (β†₯(StarAlgebra.adjoin R s)) B] [AlgHomClass F R (β†₯(StarAlgebra.adjoin R s)) B] [StarHomClass F (β†₯(StarAlgebra.adjoin R s)) B] {f g : F} (h : βˆ€ (x : β†₯(StarAlgebra.adjoin R s)), ↑x ∈ s β†’ f x = g x) :
                                                                    f = g
                                                                    theorem StarAlgHom.ext_adjoin_singleton {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R A] {a : A} [FunLike F (β†₯(StarAlgebra.adjoin R {a})) B] [AlgHomClass F R (β†₯(StarAlgebra.adjoin R {a})) B] [StarHomClass F (β†₯(StarAlgebra.adjoin R {a})) B] {f g : F} (h : f ⟨a, β‹―βŸ© = g ⟨a, β‹―βŸ©) :
                                                                    f = g
                                                                    def StarAlgHom.equalizer {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R A] [FunLike F A B] [AlgHomClass F R A B] [StarHomClass F A B] (f g : F) :

                                                                    The equalizer of two star R-algebra homomorphisms.

                                                                    Equations
                                                                      Instances For
                                                                        @[simp]
                                                                        theorem StarAlgHom.mem_equalizer {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R A] [FunLike F A B] [AlgHomClass F R A B] [StarHomClass F A B] (f g : F) (x : A) :
                                                                        x ∈ equalizer f g ↔ f x = g x
                                                                        theorem StarAlgHom.adjoin_le_equalizer {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R A] [FunLike F A B] [AlgHomClass F R A B] [StarHomClass F A B] (f g : F) {s : Set A} (h : Set.EqOn (⇑f) (⇑g) s) :
                                                                        theorem StarAlgHom.ext_of_adjoin_eq_top {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R A] [FunLike F A B] [AlgHomClass F R A B] [StarHomClass F A B] {s : Set A} (h : StarAlgebra.adjoin R s = ⊀) ⦃f g : F⦄ (hs : Set.EqOn (⇑f) (⇑g) s) :
                                                                        f = g
                                                                        theorem StarAlgHom.map_adjoin {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R A] [StarModule R B] (f : A →⋆ₐ[R] B) (s : Set A) :
                                                                        def StarAlgHom.range {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (Ο† : A →⋆ₐ[R] B) :

                                                                        Range of a StarAlgHom as a star subalgebra.

                                                                        Equations
                                                                          Instances For
                                                                            def StarAlgHom.codRestrict {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R B) (hf : βˆ€ (x : A), f x ∈ S) :

                                                                            Restriction of the codomain of a StarAlgHom to a star subalgebra containing the range.

                                                                            Equations
                                                                              Instances For
                                                                                @[simp]
                                                                                theorem StarAlgHom.coe_codRestrict {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R B) (hf : βˆ€ (x : A), f x ∈ S) (x : A) :
                                                                                ↑((f.codRestrict S hf) x) = f x
                                                                                @[simp]
                                                                                theorem StarAlgHom.subtype_comp_codRestrict {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R B) (hf : βˆ€ (x : A), f x ∈ S) :
                                                                                S.subtype.comp (f.codRestrict S hf) = f
                                                                                theorem StarAlgHom.injective_codRestrict {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (S : StarSubalgebra R B) (hf : βˆ€ (x : A), f x ∈ S) :
                                                                                def StarAlgHom.rangeRestrict {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) :

                                                                                Restriction of the codomain of a StarAlgHom to its range.

                                                                                Equations
                                                                                  Instances For
                                                                                    noncomputable def StarAlgEquiv.ofInjective {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (hf : Function.Injective ⇑f) :

                                                                                    The StarAlgEquiv onto the range corresponding to an injective StarAlgHom.

                                                                                    Equations
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem StarAlgEquiv.ofInjective_symm_apply {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (hf : Function.Injective ⇑f) (a✝ : β†₯(↑f).range) :
                                                                                        (ofInjective f hf).symm a✝ = (AlgEquiv.ofInjective (↑f) hf).invFun a✝
                                                                                        @[simp]
                                                                                        theorem StarAlgEquiv.ofInjective_apply {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A →⋆ₐ[R] B) (hf : Function.Injective ⇑f) (a : A) :
                                                                                        def StarAlgHom.restrictScalars (R : Type u_1) {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra S A] [Algebra S B] [Algebra R A] [Algebra R B] [IsScalarTower R S A] [IsScalarTower R S B] [Star A] [Star B] (f : A →⋆ₐ[S] B) :
                                                                                        Equations
                                                                                          Instances For
                                                                                            @[simp]
                                                                                            theorem StarAlgHom.restrictScalars_apply (R : Type u_1) {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra S A] [Algebra S B] [Algebra R A] [Algebra R B] [IsScalarTower R S A] [IsScalarTower R S B] [Star A] [Star B] (f : A →⋆ₐ[S] B) (a✝ : A) :
                                                                                            (restrictScalars R f) a✝ = f a✝
                                                                                            def StarAlgEquiv.restrictScalars (R : Type u_1) {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra S A] [Algebra S B] [Algebra R A] [Algebra R B] [IsScalarTower R S A] [IsScalarTower R S B] [Star A] [Star B] (f : A ≃⋆ₐ[S] B) :
                                                                                            Equations
                                                                                              Instances For
                                                                                                @[simp]
                                                                                                theorem StarAlgEquiv.restrictScalars_symm_apply (R : Type u_1) {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra S A] [Algebra S B] [Algebra R A] [Algebra R B] [IsScalarTower R S A] [IsScalarTower R S B] [Star A] [Star B] (f : A ≃⋆ₐ[S] B) (a✝ : B) :
                                                                                                (restrictScalars R f).symm a✝ = f.invFun a✝
                                                                                                @[simp]
                                                                                                theorem StarAlgEquiv.restrictScalars_apply (R : Type u_1) {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra S A] [Algebra S B] [Algebra R A] [Algebra R B] [IsScalarTower R S A] [IsScalarTower R S B] [Star A] [Star B] (f : A ≃⋆ₐ[S] B) (a : A) :
                                                                                                (restrictScalars R f) a = f a

                                                                                                Turn a non-unital star subalgebra containing 1 into a StarSubalgebra.

                                                                                                Equations
                                                                                                  Instances For