Theoremstwo_mul_sub_one_mem_unitary, mem_unitary_iff_mul_star_self, mem_unitary_iff_star_mul_self, mem_unitary_of_mul_star_self, mem_unitary_of_star_mul_self, coe_div, coe_inv, coe_isStarNormal, coe_map, coe_map_star, coe_mul_star_self, coe_neg, coe_smul, coe_star, coe_star_mul_self, coe_zpow, instIsScalarTowerSubtypeMemSubmonoidUnitary, instIsStarNormal, instSMulCommClassSubtypeMemSubmonoidUnitary, instStarModuleSubtypeMemSubmonoidUnitary, inv_mem, inv_mem_iff, inv_mul_mem_iff, isUnit_coe, mapEquiv_apply, mapEquiv_refl, mapEquiv_symm, mapEquiv_symm_apply, mapEquiv_trans, map_coe, map_comp, map_id, map_injective, map_mem, mem_iff, mem_iff_self_mul_star, mem_iff_star_mul_self, mul_inv_mem_iff, mul_left_inj, mul_right_inj, mul_star_self, mul_star_self_of_mem, smul_mem, smul_mem_of_mem, spectrum_star_left_conjugate, spectrum_star_right_conjugate, star_eq_inv, star_eq_inv', star_mem, star_mem_iff, star_mul_self, star_mul_self_of_mem, toMonoidHom_mapEquiv, toUnits_comp_map, toUnits_injective, val_inv_toUnits_apply, val_toUnits_apply, inv_mul_mem_unitary, mul_inv_mem_unitary, unitary_eq, isStarNormal_of_mem_unitary, mem_unitarySubgroup_iff, coe_div, coe_inv, coe_map, coe_map_star, coe_mul_star_self, coe_neg, coe_smul, coe_star, coe_star_mul_self, coe_zpow, inv_mem, inv_mul_mem_iff, mapEquiv_refl, mapEquiv_symm, mapEquiv_trans, map_comp, map_id, map_injective, map_mem, mem_iff, mem_iff_self_mul_star, mem_iff_star_mul_self, mul_inv_mem_iff, mul_left_inj, mul_right_inj, mul_star_self, mul_star_self_of_mem, smul_mem, smul_mem_of_mem, unitary_conjugate, unitary_conjugate', star_eq_inv, star_eq_inv', star_mem, star_mem_iff, star_mul_self, star_mul_self_of_mem, toMonoidHom_mapEquiv, toUnits_comp_map, toUnits_injective, val_toUnits_apply, unitarySubgroupUnitsEquiv_apply_coe, unitarySubgroup_toSubmonoid, val_inv_unitarySubgroupUnitsEquiv_symm_apply_coe, val_unitarySubgroupUnitsEquiv_symm_apply_coe | 107 |