Documentation

Mathlib.Algebra.Star.Unitary

Unitary elements of a star monoid #

This file defines unitary R, where R is a star monoid, as the submonoid made of the elements that satisfy star U * U = 1 and U * star U = 1, and these form a group. This includes, for instance, unitary operators on Hilbert spaces.

See also Matrix.UnitaryGroup for specializations to unitary (Matrix n n R).

Tags #

unitary

def unitary (R : Type u_1) [Monoid R] [StarMul R] :

In a *-monoid, unitary R is the submonoid consisting of all the elements U of R such that star U * U = 1 and U * star U = 1.

Equations
    Instances For
      theorem Unitary.mem_iff {R : Type u_1} [Monoid R] [StarMul R] {U : R} :
      @[simp]
      theorem Unitary.star_mul_self_of_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U โˆˆ unitary R) :
      star U * U = 1
      @[simp]
      theorem Unitary.mul_star_self_of_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U โˆˆ unitary R) :
      U * star U = 1
      theorem Unitary.star_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U โˆˆ unitary R) :
      @[simp]
      theorem Unitary.coe_star {R : Type u_1} [Monoid R] [StarMul R] {U : โ†ฅ(unitary R)} :
      โ†‘(star U) = star โ†‘U
      theorem Unitary.coe_star_mul_self {R : Type u_1} [Monoid R] [StarMul R] (U : โ†ฅ(unitary R)) :
      star โ†‘U * โ†‘U = 1
      theorem Unitary.coe_mul_star_self {R : Type u_1} [Monoid R] [StarMul R] (U : โ†ฅ(unitary R)) :
      โ†‘U * โ†‘(star U) = 1
      @[simp]
      theorem Unitary.star_mul_self {R : Type u_1} [Monoid R] [StarMul R] (U : โ†ฅ(unitary R)) :
      star U * U = 1
      @[simp]
      theorem Unitary.mul_star_self {R : Type u_1} [Monoid R] [StarMul R] (U : โ†ฅ(unitary R)) :
      U * star U = 1
      def Unitary.toUnits {R : Type u_1} [Monoid R] [StarMul R] :
      โ†ฅ(unitary R) โ†’* Rหฃ

      The unitary elements embed into the units.

      Equations
        Instances For
          @[simp]
          theorem Unitary.val_inv_toUnits_apply {R : Type u_1} [Monoid R] [StarMul R] (x : โ†ฅ(unitary R)) :
          @[simp]
          theorem Unitary.val_toUnits_apply {R : Type u_1} [Monoid R] [StarMul R] (x : โ†ฅ(unitary R)) :
          โ†‘(toUnits x) = โ†‘x
          theorem IsUnit.mem_unitary_of_star_mul_self {R : Type u_1} [Monoid R] [StarMul R] {u : R} (hu : IsUnit u) :
          star u * u = 1 โ†’ u โˆˆ unitary R

          Alias of the reverse direction of IsUnit.mem_unitary_iff_star_mul_self.

          theorem IsUnit.mem_unitary_of_mul_star_self {R : Type u_1} [Monoid R] [StarMul R] {u : R} (hu : IsUnit u) :
          u * star u = 1 โ†’ u โˆˆ unitary R

          Alias of the reverse direction of IsUnit.mem_unitary_iff_mul_star_self.

          theorem Unitary.isUnit_coe {R : Type u_1} [Monoid R] [StarMul R] {U : โ†ฅ(unitary R)} :
          IsUnit โ†‘U
          theorem Unitary.mul_left_inj {R : Type u_1} [Monoid R] [StarMul R] {x y : R} (U : โ†ฅ(unitary R)) :
          x * โ†‘U = y * โ†‘U โ†” x = y

          For unitary U in a star-monoid R, x * U = y * U if and only if x = y for all x and y in R.

          theorem Unitary.mul_right_inj {R : Type u_1} [Monoid R] [StarMul R] {x y : R} (U : โ†ฅ(unitary R)) :
          โ†‘U * x = โ†‘U * y โ†” x = y

          For unitary U in a star-monoid R, U * x = U * y if and only if x = y for all x and y in R.

          theorem Units.mul_inv_mem_unitary {R : Type u_1} [Monoid R] [StarMul R] (a b : Rหฃ) :
          โ†‘a * โ†‘bโปยน โˆˆ unitary R โ†” star a * a = star b * b

          In a star monoid, the product a * bโปยน of units is unitary if star a * a = star b * b.

          theorem Units.inv_mul_mem_unitary {R : Type u_1} [Monoid R] [StarMul R] (a b : Rหฃ) :
          โ†‘aโปยน * โ†‘b โˆˆ unitary R โ†” a * star a = b * star b

          In a star monoid, the product aโปยน * b of units is unitary if a * star a = b * star b.

          instance Unitary.coe_isStarNormal {R : Type u_1} [Monoid R] [StarMul R] (u : โ†ฅ(unitary R)) :
          IsStarNormal โ†‘u
          def unitarySubgroup (G : Type u_2) [Group G] [StarMul G] :

          unitary as a Subgroup of a group.

          Note the group structure on this type is not defeq to the one on unitary. This situation naturally arises when considering the unitary elements as a subgroup of the group of units of a star monoid.

          Equations
            Instances For
              theorem Unitary.smul_mem_of_mem {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] {r : R} {a : A} (hr : r โˆˆ unitary R) (ha : a โˆˆ unitary A) :
              theorem Unitary.smul_mem {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] (r : โ†ฅ(unitary R)) {a : A} (ha : a โˆˆ unitary A) :
              instance Unitary.instSMulSubtypeMemSubmonoidUnitary {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] :
              SMul โ†ฅ(unitary R) โ†ฅ(unitary A)
              Equations
                @[simp]
                theorem Unitary.coe_smul {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] (r : โ†ฅ(unitary R)) (a : โ†ฅ(unitary A)) :
                โ†‘(r โ€ข a) = r โ€ข โ†‘a
                instance Unitary.instMulActionSubtypeMemSubmonoidUnitary {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] :
                MulAction โ†ฅ(unitary R) โ†ฅ(unitary A)
                Equations
                  instance Unitary.instSMulCommClassSubtypeMemSubmonoidUnitary {R : Type u_1} {S : Type u_2} {A : Type u_3} [Monoid R] [Monoid S] [Monoid A] [StarMul R] [StarMul S] [StarMul A] [MulAction R A] [MulAction S A] [StarModule R A] [StarModule S A] [IsScalarTower R A A] [IsScalarTower S A A] [SMulCommClass R A A] [SMulCommClass S A A] [SMulCommClass R S A] :
                  SMulCommClass โ†ฅ(unitary R) โ†ฅ(unitary S) โ†ฅ(unitary A)
                  instance Unitary.instIsScalarTowerSubtypeMemSubmonoidUnitary {R : Type u_1} {S : Type u_2} {A : Type u_3} [Monoid R] [Monoid S] [Monoid A] [StarMul R] [StarMul S] [StarMul A] [MulAction R S] [MulAction R A] [MulAction S A] [StarModule R S] [StarModule R A] [StarModule S A] [IsScalarTower R A A] [IsScalarTower S A A] [SMulCommClass R A A] [SMulCommClass S A A] [IsScalarTower R S S] [SMulCommClass R S S] [IsScalarTower R S A] :
                  IsScalarTower โ†ฅ(unitary R) โ†ฅ(unitary S) โ†ฅ(unitary A)
                  theorem Unitary.map_mem {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] {F : Type u_5} [FunLike F R S] [StarHomClass F R S] [MonoidHomClass F R S] (f : F) {r : R} (hr : r โˆˆ unitary R) :
                  def Unitary.map {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R โ†’โ‹†* S) :
                  โ†ฅ(unitary R) โ†’โ‹†* โ†ฅ(unitary S)

                  The star monoid homomorphism between unitary subgroups induced by a star monoid homomorphism of the underlying star monoids.

                  Equations
                    Instances For
                      @[simp]
                      theorem Unitary.map_coe {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R โ†’โ‹†* S) (aโœ : โ†ฅ(unitary R)) :
                      (map f) aโœ = Subtype.map โ‡‘f โ‹ฏ aโœ
                      @[simp]
                      theorem Unitary.coe_map {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R โ†’โ‹†* S) (x : โ†ฅ(unitary R)) :
                      โ†‘((map f) x) = f โ†‘x
                      @[simp]
                      theorem Unitary.coe_map_star {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R โ†’โ‹†* S) (x : โ†ฅ(unitary R)) :
                      โ†‘((map f) (star x)) = f (star โ†‘x)
                      theorem Unitary.map_comp {R : Type u_2} {S : Type u_3} {T : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [Monoid T] [StarMul T] (g : S โ†’โ‹†* T) (f : R โ†’โ‹†* S) :
                      map (g.comp f) = (map g).comp (map f)
                      @[simp]
                      theorem Unitary.map_injective {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] {f : R โ†’โ‹†* S} (hf : Function.Injective โ‡‘f) :
                      def Unitary.mapEquiv {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R โ‰ƒโ‹†* S) :
                      โ†ฅ(unitary R) โ‰ƒโ‹†* โ†ฅ(unitary S)

                      The star monoid isomorphism between unitary subgroups induced by a star monoid isomorphism of the underlying star monoids.

                      Equations
                        Instances For
                          @[simp]
                          theorem Unitary.mapEquiv_apply {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R โ‰ƒโ‹†* S) (a : โ†ฅ(unitary R)) :
                          @[simp]
                          theorem Unitary.mapEquiv_symm_apply {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R โ‰ƒโ‹†* S) (a : โ†ฅ(unitary S)) :
                          @[simp]
                          theorem Unitary.mapEquiv_symm {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R โ‰ƒโ‹†* S) :
                          @[simp]
                          theorem Unitary.mapEquiv_trans {R : Type u_2} {S : Type u_3} {T : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [Monoid T] [StarMul T] (f : R โ‰ƒโ‹†* S) (g : S โ‰ƒโ‹†* T) :
                          def unitarySubgroupUnitsEquiv {M : Type u_5} [Monoid M] [StarMul M] :
                          โ†ฅ(unitarySubgroup Mหฃ) โ‰ƒ* โ†ฅ(unitary M)

                          The unitary subgroup of the units is equivalent to the unitary elements of the monoid.

                          Equations
                            Instances For
                              @[simp]
                              theorem unitarySubgroupUnitsEquiv_apply_coe {M : Type u_5} [Monoid M] [StarMul M] (x : โ†ฅ(unitarySubgroup Mหฃ)) :
                              โ†‘(unitarySubgroupUnitsEquiv x) = โ†‘โ†‘x
                              @[simp]
                              theorem val_unitarySubgroupUnitsEquiv_symm_apply_coe {M : Type u_5} [Monoid M] [StarMul M] (x : โ†ฅ(unitary M)) :
                              โ†‘โ†‘(unitarySubgroupUnitsEquiv.symm x) = โ†‘x
                              theorem Unitary.coe_inv {R : Type u_1} [GroupWithZero R] [StarMul R] (U : โ†ฅ(unitary R)) :
                              โ†‘Uโปยน = (โ†‘U)โปยน
                              theorem Unitary.coe_div {R : Type u_1} [GroupWithZero R] [StarMul R] (Uโ‚ Uโ‚‚ : โ†ฅ(unitary R)) :
                              โ†‘(Uโ‚ / Uโ‚‚) = โ†‘Uโ‚ / โ†‘Uโ‚‚
                              theorem Unitary.coe_zpow {R : Type u_1} [GroupWithZero R] [StarMul R] (U : โ†ฅ(unitary R)) (z : โ„ค) :
                              โ†‘(U ^ z) = โ†‘U ^ z
                              theorem Unitary.coe_neg {R : Type u_1} [Ring R] [StarRing R] (U : โ†ฅ(unitary R)) :
                              โ†‘(-U) = -โ†‘U
                              @[simp]
                              theorem Unitary.spectrum_star_right_conjugate {R : Type u_2} {A : Type u_3} [CommSemiring R] [Ring A] [Algebra R A] [StarMul A] {a : A} {U : โ†ฅ(unitary A)} :
                              spectrum R (โ†‘U * a * star โ†‘U) = spectrum R a

                              Unitary conjugation preserves the spectrum, star on right.

                              @[simp]
                              theorem Unitary.spectrum_star_left_conjugate {R : Type u_2} {A : Type u_3} [CommSemiring R] [Ring A] [Algebra R A] [StarMul A] {a : A} {U : โ†ฅ(unitary A)} :
                              spectrum R (star โ†‘U * a * โ†‘U) = spectrum R a

                              Unitary conjugation preserves the spectrum, star on left.

                              Deprecated results #

                              @[deprecated Unitary.mem_iff (since := "2025-10-29")]
                              theorem unitary.mem_iff {R : Type u_1} [Monoid R] [StarMul R] {U : R} :

                              Alias of Unitary.mem_iff.

                              @[deprecated Unitary.star_mul_self_of_mem (since := "2025-10-29")]
                              theorem unitary.star_mul_self_of_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U โˆˆ unitary R) :
                              star U * U = 1

                              Alias of Unitary.star_mul_self_of_mem.

                              @[deprecated Unitary.mul_star_self_of_mem (since := "2025-10-29")]
                              theorem unitary.mul_star_self_of_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U โˆˆ unitary R) :
                              U * star U = 1

                              Alias of Unitary.mul_star_self_of_mem.

                              @[deprecated Unitary.star_mem (since := "2025-10-29")]
                              theorem unitary.star_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U โˆˆ unitary R) :

                              Alias of Unitary.star_mem.

                              @[deprecated Unitary.star_mem_iff (since := "2025-10-29")]
                              theorem unitary.star_mem_iff {R : Type u_1} [Monoid R] [StarMul R] {U : R} :

                              Alias of Unitary.star_mem_iff.

                              @[deprecated Unitary.coe_star (since := "2025-10-29")]
                              theorem unitary.coe_star {R : Type u_1} [Monoid R] [StarMul R] {U : โ†ฅ(unitary R)} :
                              โ†‘(star U) = star โ†‘U

                              Alias of Unitary.coe_star.

                              @[deprecated Unitary.coe_star_mul_self (since := "2025-10-29")]
                              theorem unitary.coe_star_mul_self {R : Type u_1} [Monoid R] [StarMul R] (U : โ†ฅ(unitary R)) :
                              star โ†‘U * โ†‘U = 1

                              Alias of Unitary.coe_star_mul_self.

                              @[deprecated Unitary.coe_mul_star_self (since := "2025-10-29")]
                              theorem unitary.coe_mul_star_self {R : Type u_1} [Monoid R] [StarMul R] (U : โ†ฅ(unitary R)) :
                              โ†‘U * โ†‘(star U) = 1

                              Alias of Unitary.coe_mul_star_self.

                              @[deprecated Unitary.star_mul_self (since := "2025-10-29")]
                              theorem unitary.star_mul_self {R : Type u_1} [Monoid R] [StarMul R] (U : โ†ฅ(unitary R)) :
                              star U * U = 1

                              Alias of Unitary.star_mul_self.

                              @[deprecated Unitary.mul_star_self (since := "2025-10-29")]
                              theorem unitary.mul_star_self {R : Type u_1} [Monoid R] [StarMul R] (U : โ†ฅ(unitary R)) :
                              U * star U = 1

                              Alias of Unitary.mul_star_self.

                              @[deprecated Unitary.star_eq_inv (since := "2025-10-29")]
                              theorem unitary.star_eq_inv {R : Type u_1} [Monoid R] [StarMul R] (U : โ†ฅ(unitary R)) :

                              Alias of Unitary.star_eq_inv.

                              @[deprecated Unitary.star_eq_inv' (since := "2025-10-29")]
                              theorem unitary.star_eq_inv' {R : Type u_1} [Monoid R] [StarMul R] :

                              Alias of Unitary.star_eq_inv'.

                              @[deprecated Unitary.toUnits (since := "2025-10-29")]
                              def unitary.toUnits {R : Type u_1} [Monoid R] [StarMul R] :
                              โ†ฅ(unitary R) โ†’* Rหฃ

                              Alias of Unitary.toUnits.


                              The unitary elements embed into the units.

                              Equations
                                Instances For
                                  @[deprecated Unitary.val_toUnits_apply (since := "2025-10-29")]
                                  theorem unitary.val_toUnits_apply {R : Type u_1} [Monoid R] [StarMul R] (x : โ†ฅ(unitary R)) :
                                  โ†‘(Unitary.toUnits x) = โ†‘x

                                  Alias of Unitary.val_toUnits_apply.

                                  @[deprecated Unitary.toUnits_injective (since := "2025-10-29")]

                                  Alias of Unitary.toUnits_injective.

                                  @[deprecated Unitary.mul_left_inj (since := "2025-10-29")]
                                  theorem unitary.mul_left_inj {R : Type u_1} [Monoid R] [StarMul R] {x y : R} (U : โ†ฅ(unitary R)) :
                                  x * โ†‘U = y * โ†‘U โ†” x = y

                                  Alias of Unitary.mul_left_inj.


                                  For unitary U in a star-monoid R, x * U = y * U if and only if x = y for all x and y in R.

                                  @[deprecated Unitary.mul_right_inj (since := "2025-10-29")]
                                  theorem unitary.mul_right_inj {R : Type u_1} [Monoid R] [StarMul R] {x y : R} (U : โ†ฅ(unitary R)) :
                                  โ†‘U * x = โ†‘U * y โ†” x = y

                                  Alias of Unitary.mul_right_inj.


                                  For unitary U in a star-monoid R, U * x = U * y if and only if x = y for all x and y in R.

                                  @[deprecated Unitary.mul_inv_mem_iff (since := "2025-10-29")]
                                  theorem unitary.mul_inv_mem_iff {G : Type u_2} [Group G] [StarMul G] (a b : G) :

                                  Alias of Unitary.mul_inv_mem_iff.

                                  @[deprecated Unitary.inv_mul_mem_iff (since := "2025-10-29")]
                                  theorem unitary.inv_mul_mem_iff {G : Type u_2} [Group G] [StarMul G] (a b : G) :

                                  Alias of Unitary.inv_mul_mem_iff.

                                  @[deprecated Unitary.inv_mem (since := "2025-10-29")]
                                  theorem unitary.inv_mem {G : Type u_2} [Group G] [StarMul G] {g : G} (hg : g โˆˆ unitary G) :

                                  Alias of Unitary.inv_mem.

                                  @[deprecated Unitary.smul_mem_of_mem (since := "2025-10-29")]
                                  theorem unitary.smul_mem_of_mem {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] {r : R} {a : A} (hr : r โˆˆ unitary R) (ha : a โˆˆ unitary A) :

                                  Alias of Unitary.smul_mem_of_mem.

                                  @[deprecated Unitary.smul_mem (since := "2025-10-29")]
                                  theorem unitary.smul_mem {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] (r : โ†ฅ(unitary R)) {a : A} (ha : a โˆˆ unitary A) :

                                  Alias of Unitary.smul_mem.

                                  @[deprecated Unitary.coe_smul (since := "2025-10-29")]
                                  theorem unitary.coe_smul {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] (r : โ†ฅ(unitary R)) (a : โ†ฅ(unitary A)) :
                                  โ†‘(r โ€ข a) = r โ€ข โ†‘a

                                  Alias of Unitary.coe_smul.

                                  @[deprecated Unitary.map_mem (since := "2025-10-29")]
                                  theorem unitary.map_mem {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] {F : Type u_5} [FunLike F R S] [StarHomClass F R S] [MonoidHomClass F R S] (f : F) {r : R} (hr : r โˆˆ unitary R) :

                                  Alias of Unitary.map_mem.

                                  @[deprecated Unitary.map (since := "2025-10-29")]
                                  def unitary.map {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R โ†’โ‹†* S) :
                                  โ†ฅ(unitary R) โ†’โ‹†* โ†ฅ(unitary S)

                                  Alias of Unitary.map.


                                  The star monoid homomorphism between unitary subgroups induced by a star monoid homomorphism of the underlying star monoids.

                                  Equations
                                    Instances For
                                      @[deprecated Unitary.coe_map (since := "2025-10-29")]
                                      theorem unitary.coe_map {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R โ†’โ‹†* S) (x : โ†ฅ(unitary R)) :
                                      โ†‘((Unitary.map f) x) = f โ†‘x

                                      Alias of Unitary.coe_map.

                                      @[deprecated Unitary.coe_map_star (since := "2025-10-29")]
                                      theorem unitary.coe_map_star {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R โ†’โ‹†* S) (x : โ†ฅ(unitary R)) :
                                      โ†‘((Unitary.map f) (star x)) = f (star โ†‘x)

                                      Alias of Unitary.coe_map_star.

                                      @[deprecated Unitary.map_id (since := "2025-10-29")]

                                      Alias of Unitary.map_id.

                                      @[deprecated Unitary.map_comp (since := "2025-10-29")]
                                      theorem unitary.map_comp {R : Type u_2} {S : Type u_3} {T : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [Monoid T] [StarMul T] (g : S โ†’โ‹†* T) (f : R โ†’โ‹†* S) :

                                      Alias of Unitary.map_comp.

                                      @[deprecated Unitary.map_injective (since := "2025-10-29")]
                                      theorem unitary.map_injective {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] {f : R โ†’โ‹†* S} (hf : Function.Injective โ‡‘f) :

                                      Alias of Unitary.map_injective.

                                      @[deprecated Unitary.toUnits_comp_map (since := "2025-10-29")]

                                      Alias of Unitary.toUnits_comp_map.

                                      @[deprecated Unitary.mapEquiv (since := "2025-10-29")]
                                      def unitary.mapEquiv {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R โ‰ƒโ‹†* S) :
                                      โ†ฅ(unitary R) โ‰ƒโ‹†* โ†ฅ(unitary S)

                                      Alias of Unitary.mapEquiv.


                                      The star monoid isomorphism between unitary subgroups induced by a star monoid isomorphism of the underlying star monoids.

                                      Equations
                                        Instances For
                                          @[deprecated Unitary.mapEquiv_refl (since := "2025-10-29")]

                                          Alias of Unitary.mapEquiv_refl.

                                          @[deprecated Unitary.mapEquiv_symm (since := "2025-10-29")]

                                          Alias of Unitary.mapEquiv_symm.

                                          @[deprecated Unitary.mapEquiv_trans (since := "2025-10-29")]
                                          theorem unitary.mapEquiv_trans {R : Type u_2} {S : Type u_3} {T : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [Monoid T] [StarMul T] (f : R โ‰ƒโ‹†* S) (g : S โ‰ƒโ‹†* T) :

                                          Alias of Unitary.mapEquiv_trans.

                                          @[deprecated Unitary.toMonoidHom_mapEquiv (since := "2025-10-29")]

                                          Alias of Unitary.toMonoidHom_mapEquiv.

                                          @[deprecated Unitary.mem_iff_star_mul_self (since := "2025-10-29")]
                                          theorem unitary.mem_iff_star_mul_self {R : Type u_1} [CommMonoid R] [StarMul R] {U : R} :

                                          Alias of Unitary.mem_iff_star_mul_self.

                                          @[deprecated Unitary.mem_iff_self_mul_star (since := "2025-10-29")]
                                          theorem unitary.mem_iff_self_mul_star {R : Type u_1} [CommMonoid R] [StarMul R] {U : R} :

                                          Alias of Unitary.mem_iff_self_mul_star.

                                          @[deprecated Unitary.coe_inv (since := "2025-10-29")]
                                          theorem unitary.coe_inv {R : Type u_1} [GroupWithZero R] [StarMul R] (U : โ†ฅ(unitary R)) :
                                          โ†‘Uโปยน = (โ†‘U)โปยน

                                          Alias of Unitary.coe_inv.

                                          @[deprecated Unitary.coe_div (since := "2025-10-29")]
                                          theorem unitary.coe_div {R : Type u_1} [GroupWithZero R] [StarMul R] (Uโ‚ Uโ‚‚ : โ†ฅ(unitary R)) :
                                          โ†‘(Uโ‚ / Uโ‚‚) = โ†‘Uโ‚ / โ†‘Uโ‚‚

                                          Alias of Unitary.coe_div.

                                          @[deprecated Unitary.coe_zpow (since := "2025-10-29")]
                                          theorem unitary.coe_zpow {R : Type u_1} [GroupWithZero R] [StarMul R] (U : โ†ฅ(unitary R)) (z : โ„ค) :
                                          โ†‘(U ^ z) = โ†‘U ^ z

                                          Alias of Unitary.coe_zpow.

                                          @[deprecated Unitary.coe_neg (since := "2025-10-29")]
                                          theorem unitary.coe_neg {R : Type u_1} [Ring R] [StarRing R] (U : โ†ฅ(unitary R)) :
                                          โ†‘(-U) = -โ†‘U

                                          Alias of Unitary.coe_neg.

                                          @[deprecated Unitary.spectrum_star_right_conjugate (since := "2025-10-20")]
                                          theorem unitary.spectrum.unitary_conjugate {R : Type u_2} {A : Type u_3} [CommSemiring R] [Ring A] [Algebra R A] [StarMul A] {a : A} {U : โ†ฅ(unitary A)} :
                                          spectrum R (โ†‘U * a * star โ†‘U) = spectrum R a

                                          Alias of Unitary.spectrum_star_right_conjugate.


                                          Unitary conjugation preserves the spectrum, star on right.

                                          @[deprecated Unitary.spectrum_star_left_conjugate (since := "2025-10-20")]
                                          theorem unitary.spectrum.unitary_conjugate' {R : Type u_2} {A : Type u_3} [CommSemiring R] [Ring A] [Algebra R A] [StarMul A] {a : A} {U : โ†ฅ(unitary A)} :
                                          spectrum R (star โ†‘U * a * โ†‘U) = spectrum R a

                                          Alias of Unitary.spectrum_star_left_conjugate.


                                          Unitary conjugation preserves the spectrum, star on left.