Documentation Verification Report

Integral

πŸ“ Source: Mathlib/AlgebraicGeometry/Geometrically/Integral.lean

Statistics

MetricCount
DefinitionsGeometricallyIntegral
1
Theoremseq_geometrically, eq_geometricallyReduced_inf_geometricallyIrreducible, geometrically_isIntegral, iff_geometricallyIntegral_fiber, isIntegral_of_isLocallyNoetherian, isIntegral_of_subsingleton, of_geometricallyReduced_of_geometricallyIrreducible, geometricallyIntegral_iff, instGeometricallyIntegralFiberToSpecResidueField, instGeometricallyIntegralFstScheme, instGeometricallyIntegralMorphismRestrict, instGeometricallyIntegralSndScheme, instGeometricallyIrreducibleOfGeometricallyIntegral, instGeometricallyReducedOfGeometricallyIntegral, instIsIntegralFiberOfGeometricallyIntegral, instIsIntegralPullbackSchemeOfGeometricallyIntegralOfFlatOfUniversallyOpenOfIsLocallyNoetherian, instIsIntegralPullbackSchemeOfGeometricallyIntegralOfFlatOfUniversallyOpenOfIsLocallyNoetherian_1, instIsStableUnderBaseChangeSchemeGeometricallyIntegral, instSurjectiveOfGeometricallyIntegral
19
Total20

AlgebraicGeometry

Definitions

NameCategoryTheorems
GeometricallyIntegral πŸ“–CompData
10 mathmath: GeometricallyIntegral.of_geometricallyReduced_of_geometricallyIrreducible, instGeometricallyIntegralSndScheme, instGeometricallyIntegralFiberToSpecResidueField, geometricallyIntegral_iff, instIsStableUnderBaseChangeSchemeGeometricallyIntegral, instGeometricallyIntegralFstScheme, GeometricallyIntegral.iff_geometricallyIntegral_fiber, instGeometricallyIntegralMorphismRestrict, GeometricallyIntegral.eq_geometricallyReduced_inf_geometricallyIrreducible, GeometricallyIntegral.eq_geometrically

Theorems

NameKindAssumesProvesValidatesDepends On
geometricallyIntegral_iff πŸ“–mathematicalβ€”GeometricallyIntegral
geometrically
IsIntegral
β€”β€”
instGeometricallyIntegralFiberToSpecResidueField πŸ“–mathematicalβ€”GeometricallyIntegral
Scheme.Hom.fiber
Spec
Scheme.residueField
Scheme.Hom.fiberToSpecResidueField
β€”CategoryTheory.MorphismProperty.pullback_snd
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
instIsStableUnderBaseChangeSchemeGeometricallyIntegral
instGeometricallyIntegralFstScheme πŸ“–mathematicalβ€”GeometricallyIntegral
CategoryTheory.Limits.pullback
Scheme
Scheme.instCategory
Scheme.Pullback.instHasPullback
CategoryTheory.Limits.pullback.fst
β€”CategoryTheory.MorphismProperty.pullback_fst
Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
instIsStableUnderBaseChangeSchemeGeometricallyIntegral
instGeometricallyIntegralMorphismRestrict πŸ“–mathematicalβ€”GeometricallyIntegral
Scheme.Opens.toScheme
CategoryTheory.Functor.obj
Scheme.Opens
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
morphismRestrict
β€”CategoryTheory.MorphismProperty.of_isPullback
instIsStableUnderBaseChangeSchemeGeometricallyIntegral
CategoryTheory.IsPullback.flip
isPullback_morphismRestrict
instGeometricallyIntegralSndScheme πŸ“–mathematicalβ€”GeometricallyIntegral
CategoryTheory.Limits.pullback
Scheme
Scheme.instCategory
Scheme.Pullback.instHasPullback
CategoryTheory.Limits.pullback.snd
β€”CategoryTheory.MorphismProperty.pullback_snd
Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
instIsStableUnderBaseChangeSchemeGeometricallyIntegral
instGeometricallyIrreducibleOfGeometricallyIntegral πŸ“–mathematicalβ€”GeometricallyIrreducibleβ€”Eq.le
GeometricallyIntegral.eq_geometricallyReduced_inf_geometricallyIrreducible
instGeometricallyReducedOfGeometricallyIntegral πŸ“–mathematicalβ€”GeometricallyReducedβ€”Eq.le
GeometricallyIntegral.eq_geometricallyReduced_inf_geometricallyIrreducible
instIsIntegralFiberOfGeometricallyIntegral πŸ“–mathematicalβ€”IsIntegral
Scheme.Hom.fiber
β€”GeometricallyIntegral.geometrically_isIntegral
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.IsPullback.of_hasPullback
instIsIntegralPullbackSchemeOfGeometricallyIntegralOfFlatOfUniversallyOpenOfIsLocallyNoetherian πŸ“–mathematicalβ€”IsIntegral
CategoryTheory.Limits.pullback
Scheme
Scheme.instCategory
Scheme.Pullback.instHasPullback
β€”GeometricallyIntegral.isIntegral_of_isLocallyNoetherian
Scheme.Pullback.instHasPullback
instGeometricallyIntegralSndScheme
Flat.instSndScheme
UniversallyOpen.snd
instIsIntegralPullbackSchemeOfGeometricallyIntegralOfFlatOfUniversallyOpenOfIsLocallyNoetherian_1 πŸ“–mathematicalβ€”IsIntegral
CategoryTheory.Limits.pullback
Scheme
Scheme.instCategory
Scheme.Pullback.instHasPullback
β€”GeometricallyIntegral.isIntegral_of_isLocallyNoetherian
Scheme.Pullback.instHasPullback
instGeometricallyIntegralFstScheme
Flat.instFstScheme
UniversallyOpen.fst
instIsStableUnderBaseChangeSchemeGeometricallyIntegral πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsStableUnderBaseChange
Scheme
Scheme.instCategory
GeometricallyIntegral
β€”instIsStableUnderBaseChangeSchemeGeometrically
GeometricallyIntegral.eq_geometrically
instSurjectiveOfGeometricallyIntegral πŸ“–mathematicalβ€”Surjectiveβ€”IsIntegral.nonempty
instIsIntegralFiberOfGeometricallyIntegral
Eq.le
Scheme.Hom.range_fiberΞΉ

AlgebraicGeometry.GeometricallyIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
eq_geometrically πŸ“–mathematicalβ€”AlgebraicGeometry.GeometricallyIntegral
AlgebraicGeometry.geometrically
AlgebraicGeometry.IsIntegral
β€”AlgebraicGeometry.geometricallyIntegral_iff
eq_geometricallyReduced_inf_geometricallyIrreducible πŸ“–mathematicalβ€”AlgebraicGeometry.GeometricallyIntegral
CategoryTheory.MorphismProperty
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
AlgebraicGeometry.GeometricallyReduced
AlgebraicGeometry.GeometricallyIrreducible
β€”eq_geometrically
AlgebraicGeometry.GeometricallyReduced.eq_geometrically
AlgebraicGeometry.GeometricallyIrreducible.eq_geometrically
AlgebraicGeometry.geometrically_inf
geometrically_isIntegral πŸ“–mathematicalβ€”AlgebraicGeometry.geometrically
AlgebraicGeometry.IsIntegral
β€”β€”
iff_geometricallyIntegral_fiber πŸ“–mathematicalβ€”AlgebraicGeometry.GeometricallyIntegral
AlgebraicGeometry.Scheme.Hom.fiber
AlgebraicGeometry.Spec
AlgebraicGeometry.Scheme.residueField
AlgebraicGeometry.Scheme.Hom.fiberToSpecResidueField
β€”eq_geometrically
isIntegral_of_isLocallyNoetherian πŸ“–mathematicalβ€”AlgebraicGeometry.IsIntegralβ€”AlgebraicGeometry.isIntegral_iff_irreducibleSpace_and_isReduced
AlgebraicGeometry.GeometricallyIrreducible.irreducibleSpace
AlgebraicGeometry.instGeometricallyIrreducibleOfGeometricallyIntegral
AlgebraicGeometry.irreducibleSpace_of_isIntegral
AlgebraicGeometry.Scheme.Hom.isOpenMap
AlgebraicGeometry.GeometricallyReduced.isReduced_of_flat_of_isLocallyNoetherian
AlgebraicGeometry.instGeometricallyReducedOfGeometricallyIntegral
AlgebraicGeometry.isReduced_of_isIntegral
isIntegral_of_subsingleton πŸ“–mathematicalβ€”AlgebraicGeometry.IsIntegralβ€”AlgebraicGeometry.isIntegral_iff_irreducibleSpace_and_isReduced
AlgebraicGeometry.GeometricallyIrreducible.irreducibleSpace_of_subsingleton
AlgebraicGeometry.instGeometricallyIrreducibleOfGeometricallyIntegral
AlgebraicGeometry.IsIntegral.nonempty
AlgebraicGeometry.GeometricallyReduced.isReduced_of_flat_of_isLocallyNoetherian
AlgebraicGeometry.instGeometricallyReducedOfGeometricallyIntegral
AlgebraicGeometry.Flat.instOfSubsingletonCarrierCarrierCommRingCatOfIsIntegral
AlgebraicGeometry.isReduced_of_isIntegral
AlgebraicGeometry.IsLocallyArtinian.isLocallyNoetherian
AlgebraicGeometry.IsArtinianScheme.toIsLocallyArtinian
AlgebraicGeometry.instIsArtinianSchemeOfSubsingletonCarrierCarrierCommRingCatOfIsReduced
of_geometricallyReduced_of_geometricallyIrreducible πŸ“–mathematicalβ€”AlgebraicGeometry.GeometricallyIntegralβ€”Eq.ge
eq_geometricallyReduced_inf_geometricallyIrreducible

---

← Back to Index