Geometrically Integral Schemes #
Main results #
AlgebraicGeometry.GeometricallyIntegral: We say that morphismf : X ⟶ Yis geometrically integral if for allSpec K ⟶ YwithKa field,X ×[Y] Spec Kis integral. We also provide the fact that this is stable under base change (by infer_instance)GeometricallyIntegral.iff_geometricallyIntegral_fiber: A scheme is geometrically integral overSiff the fibers of alls : Sare geometrically integral.AlgebraicGeometry.GeometricallyIntegral.isIntegral_of_isLocallyNoetherian: IfXis geometrically integral, flat, and universally open (e.g. when over a field), over an integral locally noetherian scheme, thenXis also integral.AlgebraicGeometry.GeometricallyIntegral.isIntegral_of_subsingleton: IfXis geometrically integral over a field, then it is integral.
We say that morphism f : X ⟶ Y is geometrically integral if for all Spec K ⟶ Y with K
a field, X ×[Y] Spec K is integral.
- geometrically_isIntegral : geometrically IsIntegral f
Instances
@[instance 100]
instance
AlgebraicGeometry.instGeometricallyReducedOfGeometricallyIntegral
{X S : Scheme}
(f : X ⟶ S)
[GeometricallyIntegral f]
:
@[instance 100]
instance
AlgebraicGeometry.instGeometricallyIrreducibleOfGeometricallyIntegral
{X S : Scheme}
(f : X ⟶ S)
[GeometricallyIntegral f]
:
instance
AlgebraicGeometry.instGeometricallyIntegralFstScheme
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[GeometricallyIntegral g]
:
instance
AlgebraicGeometry.instGeometricallyIntegralSndScheme
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[GeometricallyIntegral f]
:
instance
AlgebraicGeometry.instGeometricallyIntegralMorphismRestrict
{X S : Scheme}
(f : X ⟶ S)
(V : S.Opens)
[GeometricallyIntegral f]
:
GeometricallyIntegral (f ∣_ V)
instance
AlgebraicGeometry.instGeometricallyIntegralFiberToSpecResidueField
{X S : Scheme}
(f : X ⟶ S)
(s : ↥S)
[GeometricallyIntegral f]
:
instance
AlgebraicGeometry.instIsIntegralFiberOfGeometricallyIntegral
{X S : Scheme}
(f : X ⟶ S)
(s : ↥S)
[GeometricallyIntegral f]
:
IsIntegral (Scheme.Hom.fiber f s)
@[instance 100]
instance
AlgebraicGeometry.instSurjectiveOfGeometricallyIntegral
{X S : Scheme}
(f : X ⟶ S)
[GeometricallyIntegral f]
:
theorem
AlgebraicGeometry.GeometricallyIntegral.isIntegral_of_isLocallyNoetherian
{X S : Scheme}
(f : X ⟶ S)
[GeometricallyIntegral f]
[Flat f]
[UniversallyOpen f]
[IsIntegral S]
[IsLocallyNoetherian S]
:
theorem
AlgebraicGeometry.GeometricallyIntegral.isIntegral_of_subsingleton
{X S : Scheme}
(f : X ⟶ S)
[GeometricallyIntegral f]
[Subsingleton ↥S]
[IsIntegral S]
:
If X is geometrically integral over a field, then it is integral.
instance
AlgebraicGeometry.instIsIntegralPullbackSchemeOfGeometricallyIntegralOfFlatOfUniversallyOpenOfIsLocallyNoetherian
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[GeometricallyIntegral f]
[Flat f]
[UniversallyOpen f]
[IsIntegral Y]
[IsLocallyNoetherian Y]
:
If X is geometrically integral and flat and universally open over S and Y is integral
and locally noetherian, then X ×ₛ Y is integral.
instance
AlgebraicGeometry.instIsIntegralPullbackSchemeOfGeometricallyIntegralOfFlatOfUniversallyOpenOfIsLocallyNoetherian_1
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[GeometricallyIntegral g]
[Flat g]
[UniversallyOpen g]
[IsIntegral X]
[IsLocallyNoetherian X]
:
theorem
AlgebraicGeometry.GeometricallyIntegral.iff_geometricallyIntegral_fiber
{X S : Scheme}
(f : X ⟶ S)
:
GeometricallyIntegral f ↔ ∀ (s : ↥S), GeometricallyIntegral (Scheme.Hom.fiberToSpecResidueField f s)