Documentation

Mathlib.AlgebraicGeometry.Geometrically.Irreducible

Geometrically Irreducible Schemes #

Main results #

We say that morphism f : X โŸถ Y is geometrically irreducible if for all Spec K โŸถ Y with K a field, X ร—[Y] Spec K is irrreducible.

Instances

    If f : X โŸถ S is geometrically irreducible and open, then f induces an equivalence between the irreducible components of X and S.

    Equations
      Instances For
        @[simp]
        theorem AlgebraicGeometry.Scheme.Hom.irreducibleComponentsEquiv_symm_apply_coe {X S : Scheme} (f : X โŸถ S) [GeometricallyIrreducible f] (hf : IsOpenMap โ‡‘f) (aโœ : โ†‘(irreducibleComponents โ†ฅS)) :
        โ†‘((irreducibleComponentsEquiv f hf).symm aโœ) = โ‡‘f โปยน' โ†‘aโœ
        @[simp]
        theorem AlgebraicGeometry.Scheme.Hom.irreducibleComponentsEquiv_apply_coe {X S : Scheme} (f : X โŸถ S) [GeometricallyIrreducible f] (hf : IsOpenMap โ‡‘f) (aโœ : โ†‘(irreducibleComponents โ†ฅX)) :
        โ†‘((irreducibleComponentsEquiv f hf) aโœ) = โ‡‘f '' โ†‘aโœ

        If X is geometrically irreducible over a point, then it is irreducible.

        If X is geometrically irreducible and universally open over S and Y is irreducible, then X ร—โ‚› Y is irreducible.

        The universally open assumption in particular holds when it is flat and locally of finite presentation, or when S is a field.