Documentation

Mathlib.AlgebraicGeometry.Fiber

Scheme-theoretic fiber #

Main result #

def AlgebraicGeometry.Scheme.Hom.fiber {X Y : Scheme} (f : X Y) (y : Y) :

f.fiber y is the scheme-theoretic fiber of f at y.

Equations
    Instances For
      def AlgebraicGeometry.Scheme.Hom.fiberι {X Y : Scheme} (f : X Y) (y : Y) :
      fiber f y X

      f.fiberι y : f.fiber y ⟶ X is the embedding of the scheme-theoretic fiber into X.

      Equations
        Instances For

          The canonical map from the scheme-theoretic fiber to the residue field.

          Equations
            Instances For
              @[reducible]

              The fiber of f at y is naturally a κ(y)-scheme.

              Equations
                Instances For
                  def AlgebraicGeometry.Scheme.Hom.fiberHomeo {X Y : Scheme} (f : X Y) (y : Y) :
                  (fiber f y) ≃ₜ ↑(f ⁻¹' {y})

                  The scheme-theoretic fiber of f at y is homeomorphic to f ⁻¹' {y}.

                  Equations
                    Instances For
                      @[simp]
                      theorem AlgebraicGeometry.Scheme.Hom.fiberHomeo_apply {X Y : Scheme} (f : X Y) (y : Y) (x : (fiber f y)) :
                      ((fiberHomeo f y) x) = (fiberι f y) x
                      @[simp]
                      theorem AlgebraicGeometry.Scheme.Hom.fiberι_fiberHomeo_symm {X Y : Scheme} (f : X Y) (y : Y) (x : ↑(f ⁻¹' {y})) :
                      (fiberι f y) ((fiberHomeo f y).symm x) = x
                      def AlgebraicGeometry.Scheme.Hom.asFiber {X Y : Scheme} (f : X Y) (x : X) :
                      (fiber f (f x))

                      A point x as a point in the fiber of f at f x.

                      Equations
                        Instances For
                          @[simp]
                          theorem AlgebraicGeometry.Scheme.Hom.fiberι_asFiber {X Y : Scheme} (f : X Y) (x : X) :
                          (fiberι f (f x)) (asFiber f x) = x
                          @[deprecated AlgebraicGeometry.Scheme.Hom.isCompact_preimage_singleton (since := "2026-02-05")]

                          Alias of AlgebraicGeometry.Scheme.Hom.isCompact_preimage_singleton.

                          def AlgebraicGeometry.Scheme.Hom.asFiberHom {X Y : Scheme} (f : X Y) (x : X) :
                          Spec (X.residueField x) fiber f (f x)

                          The κ(x)-point of f ⁻¹' {f x} corresponding to x.

                          Equations
                            Instances For
                              @[simp]
                              theorem AlgebraicGeometry.Scheme.Hom.asFiberHom_apply {X Y : Scheme} (f : X Y) (x : X) (y : (Spec (X.residueField x))) :
                              (asFiberHom f x) y = asFiber f x