Scheme-theoretic fiber #
Main result #
AlgebraicGeometry.Scheme.Hom.fiber:f.fiber yis the scheme-theoretic fiber offaty.AlgebraicGeometry.Scheme.Hom.fiberHomeo:f.fiber yis homeomorphic tof ⁻¹' {y}.AlgebraicGeometry.Scheme.Hom.finite_preimage: Finite morphisms have finite fibers.AlgebraicGeometry.Scheme.Hom.discrete_fiber: Finite morphisms have discrete fibers.
instance
AlgebraicGeometry.instCanonicallyOverFiber
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
:
(Scheme.Hom.fiber f y).CanonicallyOver X
Equations
The canonical map from the scheme-theoretic fiber to the residue field.
Equations
Instances For
@[reducible]
def
AlgebraicGeometry.Scheme.Hom.fiberOverSpecResidueField
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
:
(fiber f y).Over (Spec (Y.residueField y))
The fiber of f at y is naturally a κ(y)-scheme.
Equations
Instances For
theorem
AlgebraicGeometry.Scheme.Hom.fiberToSpecResidueField_apply
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
(x : ↥(fiber f y))
:
The scheme-theoretic fiber of f at y is homeomorphic to f ⁻¹' {y}.
Equations
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.fiberHomeo_apply
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
(x : ↥(fiber f y))
:
A point x as a point in the fiber of f at f x.
Equations
Instances For
@[simp]
instance
AlgebraicGeometry.instCompactSpaceCarrierCarrierCommRingCatFiberOfQuasiCompact
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
(y : ↥Y)
:
CompactSpace ↥(Scheme.Hom.fiber f y)
theorem
AlgebraicGeometry.Scheme.Hom.isCompact_preimage_singleton
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
(y : ↥Y)
:
@[deprecated AlgebraicGeometry.Scheme.Hom.isCompact_preimage_singleton (since := "2026-02-05")]
theorem
AlgebraicGeometry.QuasiCompact.isCompact_preimage_singleton
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
(y : ↥Y)
:
Alias of AlgebraicGeometry.Scheme.Hom.isCompact_preimage_singleton.
instance
AlgebraicGeometry.instIsAffineFiberOfIsAffineHom
{X Y : Scheme}
(f : X ⟶ Y)
[IsAffineHom f]
(y : ↥Y)
:
IsAffine (Scheme.Hom.fiber f y)
instance
AlgebraicGeometry.instJacobsonSpaceCarrierCarrierCommRingCatFiberOfLocallyOfFiniteType
{X Y : Scheme}
(f : X ⟶ Y)
(y : ↥Y)
[LocallyOfFiniteType f]
:
JacobsonSpace ↥(Scheme.Hom.fiber f y)
The κ(x)-point of f ⁻¹' {f x} corresponding to x.
Equations
Instances For
@[simp]
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.asFiberHom_fiberι_assoc
{X Y : Scheme}
(f : X ⟶ Y)
(x : ↥X)
{Z : Scheme}
(h : X ⟶ Z)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.asFiberHom_fiberToSpecResidueField
{X Y : Scheme}
(f : X ⟶ Y)
(x : ↥X)
:
CategoryTheory.CategoryStruct.comp (asFiberHom f x) (fiberToSpecResidueField f (f x)) = Spec.map (residueFieldMap f x)
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.asFiberHom_fiberToSpecResidueField_assoc
{X Y : Scheme}
(f : X ⟶ Y)
(x : ↥X)
{Z : Scheme}
(h : Spec (Y.residueField (f x)) ⟶ Z)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.asFiberHom_apply
{X Y : Scheme}
(f : X ⟶ Y)
(x : ↥X)
(y : ↥(Spec (X.residueField x)))
:
@[simp]