Documentation

Mathlib.AlgebraicGeometry.Scheme

The category of schemes #

A scheme is a locally ringed space such that every point is contained in some open set where there is an isomorphism of presheaves between the restriction to that open set, and the structure sheaf of Spec R, for some commutative ring R.

A morphism of schemes is just a morphism of the underlying locally ringed spaces.

We define Scheme as an X : LocallyRingedSpace, along with a proof that every point has an open neighbourhood U so that the restriction of X to U is isomorphic, as a locally ringed space, to Spec.toLocallyRingedSpace.obj (op R) for some R : CommRingCat.

Instances For

    Pretty printer for coercing schemes to types.

    Equations
      Instances For
        @[reducible, inline]

        The type of open sets of a scheme.

        Equations
          Instances For

            A morphism between schemes is a morphism between the underlying locally ringed spaces.

            Instances For
              @[reducible, inline]

              Cast a morphism of schemes into morphisms of local ringed spaces.

              Equations
                Instances For

                  See Note [custom simps projection]

                  Equations
                    Instances For

                      Schemes are a full subcategory of locally ringed spaces.

                      Equations

                        f ⁻¹ᵁ U is notation for (Opens.map f.base).obj U, the preimage of an open set U under f. The preferred name in lemmas is preimage and it should be treated as an infix.

                        Equations
                          Instances For

                            Γ(X, U) is notation for X.presheaf.obj (op U).

                            Equations
                              Instances For

                                Pretty printer for coercing morphisms between schemes to functions.

                                Equations
                                  Instances For

                                    Pretty printer for applying morphisms of schemes to set-theoretic points.

                                    Equations
                                      Instances For
                                        @[reducible, inline]

                                        The structure sheaf of a scheme.

                                        Equations
                                          Instances For

                                            We give schemes the specialization preorder by default.

                                            Equations
                                              @[reducible, inline]

                                              Given a morphism of schemes f : X ⟶ Y, and open U ⊆ Y, this is the induced map Γ(Y, U) ⟶ Γ(X, f ⁻¹ᵁ U).

                                              This is treated as a suffix in lemma names.

                                              Equations
                                                Instances For
                                                  @[reducible, inline]

                                                  Given a morphism of schemes f : X ⟶ Y, this is the induced map Γ(Y, ⊤) ⟶ Γ(X, ⊤). This is treated as a suffix in lemma names.

                                                  Equations
                                                    Instances For

                                                      Given a morphism of schemes f : X ⟶ Y, and open sets U ⊆ Y, V ⊆ f ⁻¹' U, this is the induced map Γ(Y, U) ⟶ Γ(X, V).

                                                      This is treated as a suffix in lemma names.

                                                      Equations
                                                        Instances For
                                                          theorem AlgebraicGeometry.Scheme.Hom.appLE_congr {X Y : Scheme} (f : X Y) {U U' : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (e₁ : U = U') (e₂ : V = V') (P : {R S : CommRingCat} → (R S) → Prop) :
                                                          P (appLE f U V e) P (appLE f U' V' )
                                                          def AlgebraicGeometry.Scheme.Hom.stalkMap {X Y : Scheme} (f : X Y) (x : X) :

                                                          A morphism of schemes f : X ⟶ Y induces a local ring homomorphism from Y.presheaf.stalk (f x) to X.presheaf.stalk x for any x : X.

                                                          Equations
                                                            Instances For
                                                              theorem AlgebraicGeometry.Scheme.Hom.ext {X Y : Scheme} {f g : X Y} (h_base : f.base = g.base) (h_app : ∀ (U : Y.Opens), CategoryTheory.CategoryStruct.comp (app f U) (X.presheaf.map (CategoryTheory.eqToHom ).op) = app g U) :
                                                              f = g
                                                              theorem AlgebraicGeometry.Scheme.Hom.ext' {X Y : Scheme} {f g : X Y} (h : toLRSHom f = toLRSHom g) :
                                                              f = g

                                                              An alternative ext lemma for scheme morphisms.

                                                              theorem AlgebraicGeometry.Scheme.Hom.iSup_preimage_eq_top {X Y : Scheme} (f : X Y) {ι : Sort u_1} {U : ιY.Opens} (hU : iSup U = ) :
                                                              ⨆ (i : ι), (TopologicalSpace.Opens.map f.base).obj (U i) =
                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.iSup_preimage_eq_top (since := "2025-10-07")]
                                                              theorem AlgebraicGeometry.Scheme.Hom.preimage_iSup_eq_top {X Y : Scheme} (f : X Y) {ι : Sort u_1} {U : ιY.Opens} (hU : iSup U = ) :
                                                              ⨆ (i : ι), (TopologicalSpace.Opens.map f.base).obj (U i) =

                                                              Alias of AlgebraicGeometry.Scheme.Hom.iSup_preimage_eq_top.

                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.preimage_mono (since := "2025-10-07")]

                                                              Alias of AlgebraicGeometry.Scheme.Hom.preimage_mono.

                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.comp_preimage (since := "2025-10-07")]

                                                              Alias of AlgebraicGeometry.Scheme.Hom.comp_preimage.

                                                              The forgetful functor from Scheme to LocallyRingedSpace.

                                                              Equations
                                                                Instances For

                                                                  The forget functor Scheme ⥤ LocallyRingedSpace is fully faithful.

                                                                  Equations
                                                                    Instances For
                                                                      noncomputable def AlgebraicGeometry.Scheme.homeoOfIso {X Y : Scheme} (e : X Y) :
                                                                      X ≃ₜ Y

                                                                      An isomorphism of schemes induces a homeomorphism of the underlying topological spaces.

                                                                      Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem AlgebraicGeometry.Scheme.coe_homeoOfIso {X Y : Scheme} (e : X Y) :
                                                                          (homeoOfIso e) = e.hom

                                                                          Alias of AlgebraicGeometry.Scheme.homeoOfIso.


                                                                          An isomorphism of schemes induces a homeomorphism of the underlying topological spaces.

                                                                          Equations
                                                                            Instances For
                                                                              noncomputable def AlgebraicGeometry.Scheme.Hom.homeomorph {X Y : Scheme} (f : X Y) [CategoryTheory.IsIso f] :
                                                                              X ≃ₜ Y

                                                                              An isomorphism of schemes induces a homeomorphism of the underlying topological spaces.

                                                                              Equations
                                                                                Instances For

                                                                                  forgetful functor to TopCat is the same as coercion

                                                                                  Equations
                                                                                    Instances For

                                                                                      The forgetful functor from Scheme to Type.

                                                                                      Equations
                                                                                        Instances For

                                                                                          forgetful functor to Scheme is the same as coercion

                                                                                          Equations
                                                                                            Instances For
                                                                                              @[simp]
                                                                                              theorem AlgebraicGeometry.Scheme.forget_map {X Y : Scheme} (f : X Y) :
                                                                                              forget.map f = f
                                                                                              theorem AlgebraicGeometry.Scheme.Hom.comp_apply {X Y Z : Scheme} (f : X Y) (g : Y Z) (x : X) :
                                                                                              def AlgebraicGeometry.Scheme.Hom.copyBase {X Y : Scheme} (f : X.Hom Y) (g : XY) (h : f = g) :
                                                                                              X Y

                                                                                              Copies a morphism with a different underlying map

                                                                                              Equations
                                                                                                Instances For
                                                                                                  theorem AlgebraicGeometry.Scheme.Hom.copyBase_eq {X Y : Scheme} (f : X.Hom Y) (g : XY) (h : f = g) :
                                                                                                  f.copyBase g h = f
                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.id_app (since := "2025-10-07")]

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.id_app.

                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.comp_toLRSHom (since := "2025-10-07")]

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.comp_toLRSHom.

                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.comp_base (since := "2025-10-07")]

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.comp_base.

                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.comp_base (since := "2025-10-07")]

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.comp_base.

                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.comp_apply (since := "2025-10-07")]
                                                                                                  theorem AlgebraicGeometry.Scheme.comp_base_apply {X Y Z : Scheme} (f : X Y) (g : Y Z) (x : X) :

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.comp_apply.

                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.comp_app (since := "2025-10-07")]

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.comp_app.

                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.comp_appTop (since := "2025-10-07")]

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.comp_appTop.

                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.appLE_comp_appLE (since := "2025-10-07")]

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.appLE_comp_appLE.

                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.comp_appLE (since := "2025-10-07")]

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.comp_appLE.

                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.congr_app (since := "2025-10-07")]

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.congr_app.

                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.app_eq (since := "2025-10-07")]

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.app_eq.

                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.eqToHom_app (since := "2025-10-07")]

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.eqToHom_app.

                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.inv_appTop (since := "2025-10-07")]

                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.inv_appTop.

                                                                                                  @[deprecated CategoryTheory.eqToHom_map (since := "2025-10-07")]

                                                                                                  Alias of CategoryTheory.eqToHom_map.

                                                                                                  The spectrum of a commutative ring, as a scheme.

                                                                                                  The notation Spec(R) for (R : Type*) [CommRing R] to mean Spec (CommRingCat.of R) is enabled in the scope SpecOfNotation. Please do not use it within Mathlib, but it can be used in downstream projects if desired. To use this, do:

                                                                                                  import Mathlib.AlgebraicGeometry.Scheme
                                                                                                  
                                                                                                  variable (R : Type*) [CommRing R]
                                                                                                  
                                                                                                  open scoped SpecOfNotation
                                                                                                  
                                                                                                  #check Spec(R)
                                                                                                  
                                                                                                  Equations
                                                                                                    Instances For

                                                                                                      The spectrum of an unbundled ring as a scheme. WARNING: This is potentially confusing as Spec (R) and Spec(R) have different meanings. Hence we avoid using it in mathlib but leave it as a scoped instance for downstream projects.

                                                                                                      WARNING: If R is already an element of CommRingCat, you should use Spec R instead of Spec(R), which is secretly Spec(↑R).

                                                                                                      Equations
                                                                                                        Instances For

                                                                                                          The induced map of a ring homomorphism on the ring spectra, as a morphism of schemes.

                                                                                                          Equations
                                                                                                            Instances For

                                                                                                              The spectrum, as a contravariant functor from commutative rings to schemes.

                                                                                                              Equations
                                                                                                                Instances For
                                                                                                                  @[deprecated AlgebraicGeometry.Spec.map_apply (since := "2025-10-07")]

                                                                                                                  Alias of AlgebraicGeometry.Spec.map_apply.

                                                                                                                  theorem AlgebraicGeometry.Scheme.isEmpty_of_commSq {W X Y S : Scheme} {f : X S} {g : Y S} {i : W X} {j : W Y} (h : CategoryTheory.CommSq i j f g) (H : Disjoint (Set.range f) (Set.range g)) :
                                                                                                                  IsEmpty W

                                                                                                                  The empty scheme.

                                                                                                                  Equations
                                                                                                                    Instances For

                                                                                                                      The global sections as a functor. For the global section themselves, use Γ(X, ⊤) instead.

                                                                                                                      Equations
                                                                                                                        Instances For

                                                                                                                          The counit (SpecΓIdentity.inv.op) of the adjunction ΓSpec as a natural isomorphism. This is almost never needed in practical use cases. Use ΓSpecIso instead.

                                                                                                                          Equations
                                                                                                                            Instances For

                                                                                                                              The global sections of Spec R is isomorphic to R.

                                                                                                                              Equations
                                                                                                                                Instances For

                                                                                                                                  The subset of the underlying space where the given section does not vanish.

                                                                                                                                  Equations
                                                                                                                                    Instances For
                                                                                                                                      @[simp]

                                                                                                                                      A variant of mem_basicOpen for bundled x : U.

                                                                                                                                      theorem AlgebraicGeometry.Scheme.mem_basicOpen'' (X : Scheme) {U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) (x : X) :

                                                                                                                                      A variant of mem_basicOpen without the x ∈ U assumption.

                                                                                                                                      @[simp]
                                                                                                                                      theorem AlgebraicGeometry.Scheme.basicOpen_mul (X : Scheme) {U : X.Opens} (f g : (X.presheaf.obj (Opposite.op U))) :
                                                                                                                                      X.basicOpen (f * g) = X.basicOpen fX.basicOpen g
                                                                                                                                      theorem AlgebraicGeometry.Scheme.basicOpen_pow (X : Scheme) {U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) {n : } (h : 0 < n) :
                                                                                                                                      X.basicOpen (f ^ n) = X.basicOpen f

                                                                                                                                      The zero locus of a set of sections s over an open set U is the closed set consisting of the complement of U and of all points of U, where all elements of f vanish.

                                                                                                                                      Equations
                                                                                                                                        Instances For
                                                                                                                                          @[simp]
                                                                                                                                          theorem AlgebraicGeometry.Scheme.mem_zeroLocus_iff (X : Scheme) {U : X.Opens} (s : Set (X.presheaf.obj (Opposite.op U))) (x : X) :
                                                                                                                                          x X.zeroLocus s fs, xX.basicOpen f
                                                                                                                                          theorem AlgebraicGeometry.Scheme.zeroLocus_iUnion (X : Scheme) {U : X.Opens} {ι : Type u_1} (f : ιSet (X.presheaf.obj (Opposite.op U))) :
                                                                                                                                          X.zeroLocus (⋃ (i : ι), f i) = ⋂ (i : ι), X.zeroLocus (f i)
                                                                                                                                          @[deprecated AlgebraicGeometry.Scheme.SpecMap_presheaf_map_eqToHom (since := "2025-10-07")]

                                                                                                                                          Alias of AlgebraicGeometry.Scheme.SpecMap_presheaf_map_eqToHom.

                                                                                                                                          theorem AlgebraicGeometry.germ_eq_zero_of_pow_mul_eq_zero {X : Scheme} {U : TopologicalSpace.Opens X} (x : U) {f s : (X.presheaf.obj (Opposite.op U))} (hx : x X.basicOpen s) {n : } (hf : s ^ n * f = 0) :
                                                                                                                                          @[simp]
                                                                                                                                          theorem AlgebraicGeometry.Scheme.hom_inv_apply {X Y : Scheme} (e : X Y) (x : X) :
                                                                                                                                          e.inv (e.hom x) = x
                                                                                                                                          @[deprecated AlgebraicGeometry.Scheme.hom_inv_apply (since := "2025-10-07")]
                                                                                                                                          theorem AlgebraicGeometry.Scheme.iso_hom_base_inv_base_apply {X Y : Scheme} (e : X Y) (x : X) :
                                                                                                                                          e.inv (e.hom x) = x

                                                                                                                                          Alias of AlgebraicGeometry.Scheme.hom_inv_apply.

                                                                                                                                          @[simp]
                                                                                                                                          theorem AlgebraicGeometry.Scheme.inv_hom_apply {X Y : Scheme} (e : X Y) (y : Y) :
                                                                                                                                          e.hom (e.inv y) = y
                                                                                                                                          @[deprecated AlgebraicGeometry.Scheme.inv_hom_apply (since := "2025-10-07")]
                                                                                                                                          theorem AlgebraicGeometry.Scheme.iso_inv_base_hom_base_apply {X Y : Scheme} (e : X Y) (y : Y) :
                                                                                                                                          e.hom (e.inv y) = y

                                                                                                                                          Alias of AlgebraicGeometry.Scheme.inv_hom_apply.

                                                                                                                                          If x = y, the stalk maps are isomorphic.

                                                                                                                                          Equations
                                                                                                                                            Instances For
                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.stalkMap_id (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.stalkMap_id.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.stalkMap_comp (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.stalkMap_comp.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.stalkSpecializes_stalkMap (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.stalkSpecializes_stalkMap.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.stalkMap_congr (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.stalkMap_congr.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.stalkMap_congr_assoc (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.stalkMap_congr_assoc.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.stalkMap_congr_hom (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.stalkMap_congr_hom.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.stalkMap_congr_hom_assoc (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.stalkMap_congr_hom_assoc.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.stalkMap_congr_point (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.stalkMap_congr_point.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.stalkMap_hom_inv (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.stalkMap_hom_inv.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.stalkMap_hom_inv_apply (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.stalkMap_hom_inv_apply.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.stalkMap_inv_hom (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.stalkMap_inv_hom.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.stalkMap_inv_hom_apply (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.stalkMap_inv_hom_apply.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.germ_stalkMap (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.germ_stalkMap.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.germ_stalkMap_assoc (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.germ_stalkMap_assoc.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.germ_stalkMap_apply (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.germ_stalkMap_apply.

                                                                                                                                              @[deprecated AlgebraicGeometry.Scheme.Hom.arrowStalkMapIsoOfEq (since := "2025-10-07")]

                                                                                                                                              Alias of AlgebraicGeometry.Scheme.Hom.arrowStalkMapIsoOfEq.


                                                                                                                                              If x = y, the stalk maps are isomorphic.

                                                                                                                                              Equations
                                                                                                                                                Instances For