Documentation

Mathlib.Topology.Category.TopCat.OpenNhds

The category of open neighborhoods of a point #

Given an object X of the category TopCat of topological spaces and a point x : X, this file builds the type OpenNhds x of open neighborhoods of x in X and endows it with the partial order given by inclusion and the corresponding category structure (as a full subcategory of the poset category Set X). This is used in Topology.Sheaves.Stalks to build the stalk of a sheaf at x as a limit over OpenNhds x.

Main declarations #

Besides OpenNhds, the main constructions here are:

def TopologicalSpace.OpenNhds {X : TopCat} (x : โ†‘X) :

The type of open neighbourhoods of a point x in a (bundled) topological space.

Equations
    Instances For
      instance TopologicalSpace.OpenNhds.opensNhds.instFunLike {X : TopCat} {x : โ†‘X} {U V : OpenNhds x} :
      FunLike (U โŸถ V) โ†ฅโ†‘U โ†ฅโ†‘V
      Equations
        @[simp]
        theorem TopologicalSpace.OpenNhds.apply_mk {X : TopCat} {x : โ†‘X} {U V : OpenNhds x} (f : U โŸถ V) (y : โ†‘X) (hy : y โˆˆ โ†‘U) :
        @[simp]
        theorem TopologicalSpace.OpenNhds.val_apply {X : TopCat} {x : โ†‘X} {U V : OpenNhds x} (f : U โŸถ V) (y : โ†ฅโ†‘U) :
        โ†‘(f y) = โ†‘y
        @[simp]
        theorem TopologicalSpace.OpenNhds.coe_id {X : TopCat} {x : โ†‘X} {U : OpenNhds x} (f : U โŸถ U) :
        โ‡‘f = id
        theorem TopologicalSpace.OpenNhds.id_apply {X : TopCat} {x : โ†‘X} {U : OpenNhds x} (f : U โŸถ U) (y : โ†ฅโ†‘U) :
        f y = y
        @[simp]
        theorem TopologicalSpace.OpenNhds.comp_apply {X : TopCat} {x : โ†‘X} {U V W : OpenNhds x} (f : U โŸถ V) (g : V โŸถ W) (xโœ : โ†ฅโ†‘U) :
        (CategoryTheory.CategoryStruct.comp f g) xโœ = g (f xโœ)
        def TopologicalSpace.OpenNhds.infLELeft {X : TopCat} {x : โ†‘X} (U V : OpenNhds x) :
        U โŠ“ V โŸถ U

        The inclusion U โŠ“ V โŸถ U as a morphism in the category of open sets.

        Equations
          Instances For
            def TopologicalSpace.OpenNhds.infLERight {X : TopCat} {x : โ†‘X} (U V : OpenNhds x) :
            U โŠ“ V โŸถ V

            The inclusion U โŠ“ V โŸถ V as a morphism in the category of open sets.

            Equations
              Instances For

                The inclusion functor from open neighbourhoods of x to open sets in the ambient topological space.

                Equations
                  Instances For
                    @[simp]
                    theorem TopologicalSpace.OpenNhds.inclusion_obj {X : TopCat} (x : โ†‘X) (U : Opens โ†‘X) (p : x โˆˆ U) :

                    The preimage functor from neighborhoods of f x to neighborhoods of x.

                    Equations
                      Instances For
                        @[simp]
                        theorem TopologicalSpace.OpenNhds.map_id_obj' {X : TopCat} (x : โ†‘X) (U : Set โ†‘X) (p : IsOpen U) (q : (CategoryTheory.ConcreteCategory.hom (CategoryTheory.CategoryStruct.id X)) x โˆˆ { carrier := U, is_open' := p }) :
                        (map (CategoryTheory.CategoryStruct.id X) x).obj โŸจ{ carrier := U, is_open' := p }, qโŸฉ = โŸจ{ carrier := U, is_open' := p }, qโŸฉ

                        Opens.map f and OpenNhds.map f form a commuting square (up to natural isomorphism) with the inclusion functors into Opens X.

                        Equations
                          Instances For

                            An open map f : X โŸถ Y induces a functor OpenNhds x โฅค OpenNhds (f x).

                            Equations
                              Instances For
                                @[simp]
                                theorem IsOpenMap.functorNhds_obj_coe {X Y : TopCat} {f : X โŸถ Y} (h : IsOpenMap โ‡‘(CategoryTheory.ConcreteCategory.hom f)) (x : โ†‘X) (U : TopologicalSpace.OpenNhds x) :
                                โ†‘((h.functorNhds x).obj U) = h.functor.obj โ†‘U
                                @[simp]
                                theorem IsOpenMap.functorNhds_map {X Y : TopCat} {f : X โŸถ Y} (h : IsOpenMap โ‡‘(CategoryTheory.ConcreteCategory.hom f)) (x : โ†‘X) {Xโœ Yโœ : TopologicalSpace.OpenNhds x} (i : Xโœ โŸถ Yโœ) :

                                An open map f : X โŸถ Y induces an adjunction between OpenNhds x and OpenNhds (f x).

                                Equations
                                  Instances For

                                    An inducing map f : X โŸถ Y induces a functor open_nhds x โฅค open_nhds (f x).

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem Topology.IsInducing.functorNhds_map {X Y : TopCat} {f : X โŸถ Y} (h : IsInducing โ‡‘(CategoryTheory.ConcreteCategory.hom f)) (x : โ†‘X) {Xโœ Yโœ : TopologicalSpace.OpenNhds x} (aโœ : (fun (a : { U : TopologicalSpace.Opens โ†‘X // x โˆˆ U }) => โ†‘a) Xโœ โŸถ (fun (a : { U : TopologicalSpace.Opens โ†‘X // x โˆˆ U }) => โ†‘a) Yโœ) :
                                        (h.functorNhds x).map aโœ = h.functor.map aโœ
                                        @[simp]
                                        theorem Topology.IsInducing.functorNhds_obj_coe {X Y : TopCat} {f : X โŸถ Y} (h : IsInducing โ‡‘(CategoryTheory.ConcreteCategory.hom f)) (x : โ†‘X) (U : TopologicalSpace.OpenNhds x) :
                                        โ†‘((h.functorNhds x).obj U) = h.functor.obj โ†‘U

                                        An inducing map f : X โŸถ Y induces an adjunction between open_nhds x and open_nhds (f x).

                                        Equations
                                          Instances For