Documentation

Mathlib.RingTheory.Spectrum.Prime.RingHom

Functoriality of the prime spectrum #

In this file we define the induced map on prime spectra induced by a ring homomorphism.

Main definitions #

def PrimeSpectrum.comap {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (f : R โ†’+* S) (p : PrimeSpectrum S) :

The pullback of an element of PrimeSpectrum S along a ring homomorphism f : R โ†’+* S. The bundled continuous version is PrimeSpectrum.comap.

Equations
    Instances For
      @[deprecated PrimeSpectrum.comap (since := "2025-12-10")]
      def RingHom.specComap {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (f : R โ†’+* S) (p : PrimeSpectrum S) :

      Alias of PrimeSpectrum.comap.


      The pullback of an element of PrimeSpectrum S along a ring homomorphism f : R โ†’+* S. The bundled continuous version is PrimeSpectrum.comap.

      Equations
        Instances For
          @[deprecated PrimeSpectrum.comap_asIdeal (since := "2025-12-10")]

          Alias of PrimeSpectrum.comap_asIdeal.

          @[deprecated PrimeSpectrum.comap_id (since := "2025-12-10")]
          theorem PrimeSpectrum.specComap_id {R : Type u} [CommSemiring R] :
          comap (RingHom.id R) = fun (x : PrimeSpectrum R) => x

          Alias of PrimeSpectrum.comap_id.

          @[simp]
          theorem PrimeSpectrum.comap_comp {R : Type u} {S : Type v} {S' : Type u_1} [CommSemiring R] [CommSemiring S] [CommSemiring S'] (f : R โ†’+* S) (g : S โ†’+* S') :
          @[deprecated PrimeSpectrum.comap_comp (since := "2025-12-10")]
          theorem PrimeSpectrum.specComap_comp {R : Type u} {S : Type v} {S' : Type u_1} [CommSemiring R] [CommSemiring S] [CommSemiring S'] (f : R โ†’+* S) (g : S โ†’+* S') :

          Alias of PrimeSpectrum.comap_comp.

          theorem PrimeSpectrum.comap_comp_apply {R : Type u} {S : Type v} {S' : Type u_1} [CommSemiring R] [CommSemiring S] [CommSemiring S'] (f : R โ†’+* S) (g : S โ†’+* S') (x : PrimeSpectrum S') :
          comap (g.comp f) x = comap f (comap g x)
          @[deprecated PrimeSpectrum.comap_comp_apply (since := "2025-12-10")]
          theorem PrimeSpectrum.specComap_comp_apply {R : Type u} {S : Type v} {S' : Type u_1} [CommSemiring R] [CommSemiring S] [CommSemiring S'] (f : R โ†’+* S) (g : S โ†’+* S') (x : PrimeSpectrum S') :
          comap (g.comp f) x = comap f (comap g x)

          Alias of PrimeSpectrum.comap_comp_apply.

          @[deprecated PrimeSpectrum.preimage_comap_zeroLocus (since := "2025-12-10")]

          Alias of PrimeSpectrum.preimage_comap_zeroLocus.

          @[deprecated PrimeSpectrum.comap_injective_of_surjective (since := "2025-12-10")]

          Alias of PrimeSpectrum.comap_injective_of_surjective.

          RingHom.comap of an isomorphism of rings as an equivalence of their prime spectra.

          Equations
            Instances For
              def PrimeSpectrum.sigmaToPi {ฮน : Type u_3} (R : ฮน โ†’ Type u_2) [(i : ฮน) โ†’ CommSemiring (R i)] :
              (i : ฮน) ร— PrimeSpectrum (R i) โ†’ PrimeSpectrum ((i : ฮน) โ†’ R i)

              The canonical map from a disjoint union of prime spectra of commutative semirings to the prime spectrum of the product semiring.

              Equations
                Instances For
                  @[simp]
                  theorem PrimeSpectrum.sigmaToPi_asIdeal {ฮน : Type u_3} (R : ฮน โ†’ Type u_2) [(i : ฮน) โ†’ CommSemiring (R i)] (aโœ : (i : ฮน) ร— PrimeSpectrum (R i)) :
                  (sigmaToPi R aโœ).asIdeal = Ideal.comap (Pi.evalRingHom R aโœ.fst) aโœ.snd.asIdeal
                  theorem PrimeSpectrum.sigmaToPi_injective {ฮน : Type u_3} (R : ฮน โ†’ Type u_2) [(i : ฮน) โ†’ CommSemiring (R i)] :
                  theorem PrimeSpectrum.exists_maximal_notMem_range_sigmaToPi_of_infinite {ฮน : Type u_3} (R : ฮน โ†’ Type u_2) [(i : ฮน) โ†’ CommSemiring (R i)] [Infinite ฮน] [โˆ€ (i : ฮน), Nontrivial (R i)] :
                  โˆƒ (I : Ideal ((i : ฮน) โ†’ R i)) (x : I.IsMaximal), { asIdeal := I, isPrime := โ‹ฏ } โˆ‰ Set.range (sigmaToPi R)

                  An infinite product of nontrivial commutative semirings has a maximal ideal outside of the range of sigmaToPi, i.e. is not of the form ฯ€แตขโปยน(๐”ญ) for some prime ๐”ญ โŠ‚ R i, where ฯ€แตข : (ฮ  i, R i) โ†’+* R i is the projection. For a complete description of all prime ideals, see https://math.stackexchange.com/a/1563190.

                  theorem PrimeSpectrum.sigmaToPi_not_surjective_of_infinite {ฮน : Type u_3} (R : ฮน โ†’ Type u_2) [(i : ฮน) โ†’ CommSemiring (R i)] [Infinite ฮน] [โˆ€ (i : ฮน), Nontrivial (R i)] :
                  theorem PrimeSpectrum.exists_comap_evalRingHom_eq {ฮน : Type u_3} {R : ฮน โ†’ Type u_4} [(i : ฮน) โ†’ CommRing (R i)] [Finite ฮน] (p : PrimeSpectrum ((i : ฮน) โ†’ R i)) :
                  โˆƒ (i : ฮน) (q : PrimeSpectrum (R i)), comap (Pi.evalRingHom R i) q = p
                  theorem PrimeSpectrum.sigmaToPi_bijective {ฮน : Type u_3} (R : ฮน โ†’ Type u_4) [(i : ฮน) โ†’ CommRing (R i)] [Finite ฮน] :
                  theorem PrimeSpectrum.iUnion_range_comap_comp_evalRingHom {ฮน : Type u_3} {R : ฮน โ†’ Type u_4} [(i : ฮน) โ†’ CommRing (R i)] [Finite ฮน] {S : Type u_5} [CommRing S] (f : S โ†’+* (i : ฮน) โ†’ R i) :
                  โ‹ƒ (i : ฮน), Set.range (comap ((Pi.evalRingHom R i).comp f)) = Set.range (comap f)
                  @[deprecated PrimeSpectrum.iUnion_range_comap_comp_evalRingHom (since := "2025-12-11")]
                  theorem PrimeSpectrum.iUnion_range_specComap_comp_evalRingHom {ฮน : Type u_3} {R : ฮน โ†’ Type u_4} [(i : ฮน) โ†’ CommRing (R i)] [Finite ฮน] {S : Type u_5} [CommRing S] (f : S โ†’+* (i : ฮน) โ†’ R i) :
                  โ‹ƒ (i : ฮน), Set.range (comap ((Pi.evalRingHom R i).comp f)) = Set.range (comap f)

                  Alias of PrimeSpectrum.iUnion_range_comap_comp_evalRingHom.

                  @[deprecated image_comap_zeroLocus_eq_zeroLocus_comap (since := "2025-12-10")]

                  Alias of image_comap_zeroLocus_eq_zeroLocus_comap.

                  @[deprecated range_comap_of_surjective (since := "2025-12-10")]

                  Alias of range_comap_of_surjective.

                  noncomputable def Ideal.primeSpectrumOrderIsoZeroLocusOfSurj {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R โ†’+* S) (hf : Function.Surjective โ‡‘f) {I : Ideal R} (hI : RingHom.ker f = I) :

                  Let f : R โ†’+* S be a surjective ring homomorphism, then Spec S is order-isomorphic to Z(I) where I = ker f.

                  Equations
                    Instances For

                      Spec (R / I) is order-isomorphic to Z(I).

                      Equations
                        Instances For

                          p is in the image of Spec S โ†’ Spec R if and only if p extended to S and restricted back to R is p.

                          A prime p is in the range of Spec S โ†’ Spec R if the fiber over p is nontrivial.

                          @[deprecated RingHom.strictMono_comap_of_surjective (since := "2025-12-10")]

                          Alias of RingHom.strictMono_comap_of_surjective.

                          @[deprecated PrimeSpectrum.residueField_comap (since := "2025-12-10")]

                          Alias of PrimeSpectrum.residueField_comap.

                          @[deprecated IsLocalHom.of_comap_surjective (since := "2025-12-10")]

                          Alias of IsLocalHom.of_comap_surjective.