Documentation

Mathlib.RingTheory.LocalRing.ResidueField.Ideal

The residue field of a prime ideal #

We define Ideal.ResidueField I to be the residue field of the local ring Localization.Prime I, and provide an IsFractionRing (R ⧸ I) I.ResidueField instance.

@[reducible, inline]
abbrev Ideal.ResidueField {R : Type u_1} [CommRing R] (I : Ideal R) [I.IsPrime] :
Type u_1

The residue field at a prime ideal, defined to be the residue field of the local ring Localization.Prime I. We also provide an IsFractionRing (R ⧸ I) I.ResidueField instance.

Equations
    Instances For
      @[reducible, inline]
      noncomputable abbrev Ideal.ResidueField.map {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (I : Ideal R) [I.IsPrime] (J : Ideal S) [J.IsPrime] (f : R →+* S) (hf : I = comap f J) :

      If I = f⁻¹(J), then there is a canonical embedding κ(I) ↪ κ(J).

      Equations
        Instances For
          @[simp]
          theorem Ideal.ResidueField.map_algebraMap {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (I : Ideal R) [I.IsPrime] (J : Ideal S) [J.IsPrime] (f : R →+* S) (hf : I = comap f J) (r : R) :
          (map I J f hf) ((algebraMap R I.ResidueField) r) = (algebraMap S J.ResidueField) (f r)
          noncomputable def Ideal.ResidueField.mapₐ {R : Type u_1} {A : Type u_3} {B : Type u_4} [CommRing R] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (I : Ideal A) [I.IsPrime] (J : Ideal B) [J.IsPrime] (f : A →ₐ[R] B) (hf : I = comap f.toRingHom J) :

          If I = f⁻¹(J), then there is a canonical embedding κ(I) ↪ κ(J).

          Equations
            Instances For
              @[simp]
              theorem Ideal.ResidueField.mapₐ_apply {R : Type u_1} {A : Type u_3} {B : Type u_4} [CommRing R] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (I : Ideal A) [I.IsPrime] (J : Ideal B) [J.IsPrime] (f : A →ₐ[R] B) (hf : I = comap f.toRingHom J) (x : I.ResidueField) :
              (mapₐ I J f hf) x = (map I J f.toRingHom hf) x
              @[simp]
              theorem Ideal.algebraMap_residueField_eq_zero {R : Type u_1} [CommRing R] {I : Ideal R} [I.IsPrime] {x : R} :
              noncomputable instance instAlgebraQuotientIdealResidueField {R : Type u_1} [CommRing R] (I : Ideal R) [I.IsPrime] :
              Equations
                @[deprecated Ideal.algebraMap_quotient_residueField_mk (since := "2025-12-02")]
                theorem algebraMap_mk {R : Type u_1} [CommRing R] (I : Ideal R) [I.IsPrime] (x : R) :

                Alias of Ideal.algebraMap_quotient_residueField_mk.

                noncomputable def Ideal.ResidueField.lift {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (I : Ideal R) [I.IsPrime] (f : R →+* S) (hf₁ : I RingHom.ker f) (hf₂ : I.primeCompl Submonoid.comap f (IsUnit.submonoid S)) :

                If f sends I to 0 and Iᶜ to units, then f lifts to κ(I).

                Equations
                  Instances For
                    @[simp]
                    theorem Ideal.ResidueField.lift_algebraMap {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (I : Ideal R) [I.IsPrime] (f : R →+* S) (hf₁ : I RingHom.ker f) (hf₂ : I.primeCompl Submonoid.comap f (IsUnit.submonoid S)) (r : R) :
                    (lift I f hf₁ hf₂) ((algebraMap R I.ResidueField) r) = f r
                    noncomputable def Ideal.ResidueField.liftₐ {R : Type u_1} {A : Type u_3} {B : Type u_4} [CommRing R] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (I : Ideal A) [I.IsPrime] (f : A →ₐ[R] B) (hf₁ : I RingHom.ker f) (hf₂ : I.primeCompl Submonoid.comap f (IsUnit.submonoid B)) :

                    If f sends I to 0 and Iᶜ to units, then f lifts to κ(I).

                    Equations
                      Instances For
                        @[simp]
                        theorem Ideal.ResidueField.liftₐ_algebraMap {R : Type u_1} {A : Type u_3} {B : Type u_4} [CommRing R] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (I : Ideal A) [I.IsPrime] (f : A →ₐ[R] B) (hf₁ : I RingHom.ker f) (hf₂ : I.primeCompl Submonoid.comap f (IsUnit.submonoid B)) (r : A) :
                        (liftₐ I f hf₁ hf₂) ((algebraMap A I.ResidueField) r) = f r
                        @[simp]
                        theorem Ideal.ResidueField.liftₐ_comp_toAlgHom {R : Type u_1} {A : Type u_3} {B : Type u_4} [CommRing R] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (I : Ideal A) [I.IsPrime] (f : A →ₐ[R] B) (hf₁ : I RingHom.ker f) (hf₂ : I.primeCompl Submonoid.comap f (IsUnit.submonoid B)) :
                        (liftₐ I f hf₁ hf₂).comp (IsScalarTower.toAlgHom R A I.ResidueField) = f
                        theorem Ideal.ResidueField.ringHom_ext {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] {I : Ideal R} [I.IsPrime] {f g : I.ResidueField →+* S} (H : f.comp (algebraMap R I.ResidueField) = g.comp (algebraMap R I.ResidueField)) :
                        f = g
                        theorem Ideal.ResidueField.algHom_ext {R : Type u_1} {A : Type u_3} {B : Type u_4} [CommRing R] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] {I : Ideal A} [I.IsPrime] {f g : I.ResidueField →ₐ[R] B} (H : f.comp (IsScalarTower.toAlgHom R A I.ResidueField) = g.comp (IsScalarTower.toAlgHom R A I.ResidueField)) :
                        f = g