Documentation

Mathlib.RingTheory.Spectrum.Prime.Basic

Prime spectrum of a commutative (semi)ring #

For the Zariski topology, see Mathlib/RingTheory/Spectrum/Prime/Topology.lean.

(It is also naturally endowed with a sheaf of rings, which is constructed in AlgebraicGeometry.StructureSheaf.)

Main definitions #

Conventions #

We denote subsets of (semi)rings with s, s', etc... whereas we denote subsets of prime spectra with t, t', etc...

Inspiration/contributors #

The contents of this file draw inspiration from https://github.com/ramonfmir/lean-scheme which has contributions from Ramon Fernandez Mir, Kevin Buzzard, Kenny Lau, and Chris Hughes (on an earlier repository).

References #

The prime spectrum of the zero ring is empty.

The map from the direct sum of prime spectra to the prime spectrum of a direct product.

Equations
    Instances For

      The prime spectrum of R Γ— S is in bijection with the disjoint unions of the prime spectrum of R and the prime spectrum of S.

      Equations
        Instances For

          The zero locus of a set s of elements of a commutative (semi)ring R is the set of all prime ideals of the ring that contain the set s.

          An element f of R can be thought of as a dependent function on the prime spectrum of R. At a point x (a prime ideal) the function (i.e., element) f takes values in the quotient ring R modulo the prime ideal x. In this manner, zeroLocus s is exactly the subset of PrimeSpectrum R where all "functions" in s vanish simultaneously.

          Equations
            Instances For

              The vanishing ideal of a set t of points of the prime spectrum of a commutative ring R is the intersection of all the prime ideals in the set t.

              An element f of R can be thought of as a dependent function on the prime spectrum of R. At a point x (a prime ideal) the function (i.e., element) f takes values in the quotient ring R modulo the prime ideal x. In this manner, vanishingIdeal t is exactly the ideal of R consisting of all "functions" that vanish on all of t.

              Equations
                Instances For
                  theorem PrimeSpectrum.coe_vanishingIdeal {R : Type u} [CommSemiring R] (t : Set (PrimeSpectrum R)) :
                  ↑(vanishingIdeal t) = {f : R | βˆ€ x ∈ t, f ∈ x.asIdeal}
                  theorem PrimeSpectrum.gc (R : Type u) [CommSemiring R] :
                  GaloisConnection (fun (I : Ideal R) => zeroLocus ↑I) fun (t : (Set (PrimeSpectrum R))α΅’α΅ˆ) => vanishingIdeal t

                  zeroLocus and vanishingIdeal form a Galois connection.

                  theorem PrimeSpectrum.gc_set (R : Type u) [CommSemiring R] :
                  GaloisConnection (fun (s : Set R) => zeroLocus s) fun (t : (Set (PrimeSpectrum R))α΅’α΅ˆ) => ↑(vanishingIdeal t)

                  zeroLocus and vanishingIdeal form a Galois connection.

                  theorem PrimeSpectrum.zeroLocus_sup {R : Type u} [CommSemiring R] (I J : Ideal R) :
                  zeroLocus ↑(I βŠ” J) = zeroLocus ↑I ∩ zeroLocus ↑J
                  theorem PrimeSpectrum.zeroLocus_iSup {R : Type u} [CommSemiring R] {ΞΉ : Sort u_1} (I : ΞΉ β†’ Ideal R) :
                  zeroLocus ↑(⨆ (i : ΞΉ), I i) = β‹‚ (i : ΞΉ), zeroLocus ↑(I i)
                  theorem PrimeSpectrum.zeroLocus_iUnion {R : Type u} [CommSemiring R] {ΞΉ : Sort u_1} (s : ΞΉ β†’ Set R) :
                  zeroLocus (⋃ (i : ΞΉ), s i) = β‹‚ (i : ΞΉ), zeroLocus (s i)
                  theorem PrimeSpectrum.zeroLocus_iUnionβ‚‚ {R : Type u} [CommSemiring R] {ΞΉ : Sort u_1} {ΞΊ : ΞΉ β†’ Sort u_2} (s : (i : ΞΉ) β†’ ΞΊ i β†’ Set R) :
                  zeroLocus (⋃ (i : ΞΉ), ⋃ (j : ΞΊ i), s i j) = β‹‚ (i : ΞΉ), β‹‚ (j : ΞΊ i), zeroLocus (s i j)
                  theorem PrimeSpectrum.zeroLocus_bUnion {R : Type u} [CommSemiring R] (s : Set (Set R)) :
                  zeroLocus (⋃ s' ∈ s, s') = β‹‚ s' ∈ s, zeroLocus s'
                  theorem PrimeSpectrum.vanishingIdeal_iUnion {R : Type u} [CommSemiring R] {ΞΉ : Sort u_1} (t : ΞΉ β†’ Set (PrimeSpectrum R)) :
                  vanishingIdeal (⋃ (i : ΞΉ), t i) = β¨… (i : ΞΉ), vanishingIdeal (t i)
                  theorem PrimeSpectrum.zeroLocus_inf {R : Type u} [CommSemiring R] (I J : Ideal R) :
                  zeroLocus ↑(I βŠ“ J) = zeroLocus ↑I βˆͺ zeroLocus ↑J
                  @[simp]
                  theorem PrimeSpectrum.zeroLocus_pow {R : Type u} [CommSemiring R] (I : Ideal R) {n : β„•} (hn : n β‰  0) :
                  zeroLocus ↑(I ^ n) = zeroLocus ↑I
                  theorem PrimeSpectrum.zeroLocus_eq_singleton {R : Type u} [CommSemiring R] (m : Ideal R) [m.IsMaximal] :
                  zeroLocus ↑m = {{ asIdeal := m, isPrime := β‹― }}

                  In a Noetherian ring, every ideal contains a product of prime ideals ([samuel1967, Β§ 3.3, Lemma 3]).

                  In a Noetherian integral domain which is not a field, every non-zero ideal contains a non-zero product of prime ideals; in a field, the whole ring is a non-zero ideal containing only 0 as product or prime ideals ([samuel1967, Β§ 3.3, Lemma 3])