Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Spectrum/Prime/Basic.lean

Statistics

MetricCount
DefinitionsinstOrderBotOfIsDomain, instUnique, primeSpectrumProd, primeSpectrumProdOfSum, vanishingIdeal, zeroLocus
6
TheoremsasIdeal_bot, coe_vanishingIdeal, exists_primeSpectrum_prod_le, exists_primeSpectrum_prod_le_and_ne_bot_of_domain, gc, gc_set, instIsEmptyOfSubsingleton, instNonemptyOfNontrivial, isEmpty_iff_subsingleton, isMax_iff, isMin_iff, le_vanishingIdeal_zeroLocus, mem_compl_zeroLocus_iff_notMem, mem_vanishingIdeal, mem_zeroLocus, nilradical_eq_iInf, nonempty_iff_nontrivial, nontrivial, primeSpectrumProd_symm_inl_asIdeal, primeSpectrumProd_symm_inr_asIdeal, range_asIdeal, subset_vanishingIdeal_zeroLocus, subset_zeroLocus_iff_le_vanishingIdeal, subset_zeroLocus_iff_subset_vanishingIdeal, subset_zeroLocus_vanishingIdeal, sup_vanishingIdeal_le, union_zeroLocus, vanishingIdeal_anti_mono, vanishingIdeal_empty, vanishingIdeal_eq_top_iff, vanishingIdeal_iUnion, vanishingIdeal_singleton, vanishingIdeal_union, vanishingIdeal_univ, vanishingIdeal_zeroLocus_eq_radical, zeroLocus_anti_mono, zeroLocus_anti_mono_ideal, zeroLocus_bUnion, zeroLocus_bot, zeroLocus_diff_singleton_zero, zeroLocus_empty, zeroLocus_empty_iff_eq_top, zeroLocus_empty_of_one_mem, zeroLocus_eq_singleton, zeroLocus_eq_univ_iff, zeroLocus_iSup, zeroLocus_iUnion, zeroLocus_iUnionβ‚‚, zeroLocus_inf, zeroLocus_insert_zero, zeroLocus_mul, zeroLocus_nilradical, zeroLocus_pow, zeroLocus_radical, zeroLocus_singleton_mul, zeroLocus_singleton_one, zeroLocus_singleton_pow, zeroLocus_singleton_zero, zeroLocus_smul_of_isUnit, zeroLocus_span, zeroLocus_subset_zeroLocus_iff, zeroLocus_subset_zeroLocus_singleton_iff, zeroLocus_sup, zeroLocus_union, zeroLocus_univ
65
Total71

PrimeSpectrum

Definitions

NameCategoryTheorems
instOrderBotOfIsDomain πŸ“–CompOp
3 mathmath: asIdeal_bot, IsLocalRing.Ring.KrullDimLE.eq_bot_or_eq_top, AlgebraicGeometry.genericPoint_eq_bot_of_affine
instUnique πŸ“–CompOpβ€”
primeSpectrumProd πŸ“–CompOp
6 mathmath: AlgebraicGeometry.coprodSpec_apply, primeSpectrumProd_symm_inl, primeSpectrumProd_symm_inr_asIdeal, primeSpectrumProd_symm_inr, AlgebraicGeometry.coprodSpec_coprodMk, primeSpectrumProd_symm_inl_asIdeal
primeSpectrumProdOfSum πŸ“–CompOpβ€”
vanishingIdeal πŸ“–CompOp
31 mathmath: vanishingIdeal_isClosed_isIrreducible, gc, vanishingIdeal_strict_anti_mono_iff, vanishingIdeal_zeroLocus_eq_radical, vanishingIdeal_range_comap, vanishingIdeal_irreducibleComponents, vanishingIdeal_anti_mono_iff, vanishingIdeal_eq_top_iff, MvPolynomial.vanishingIdeal_pointToPoint, sup_vanishingIdeal_le, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_ideal, subset_vanishingIdeal_zeroLocus, vanishingIdeal_isIrreducible, subset_zeroLocus_iff_le_vanishingIdeal, vanishingIdeal_anti_mono, isRadical_vanishingIdeal, vanishingIdeal_union, vanishingIdeal_empty, vanishingIdeal_singleton, gc_set, vanishingIdeal_univ, coe_vanishingIdeal, subset_zeroLocus_vanishingIdeal, mem_vanishingIdeal, isIrreducible_iff_vanishingIdeal_isPrime, vanishingIdeal_closure, subset_zeroLocus_iff_subset_vanishingIdeal, vanishingIdeal_iUnion, vanishingIdeal_mem_minimalPrimes, le_vanishingIdeal_zeroLocus, zeroLocus_vanishingIdeal_eq_closure
zeroLocus πŸ“–CompOp
104 mathmath: zeroLocus_anti_mono, closure_range_comap, Module.support_quotient, isClosed_zeroLocus, zeroLocus_nilradical, isClopen_iff_mul_add_zeroLocus, zeroLocus_eq_univ_iff, zeroLocus_empty, range_comap_of_surjective, isRetrocompact_zeroLocus_compl_of_fg, gc, MvPolynomial.image_comap_C_basicOpen, isClosed_iff_zeroLocus, range_specComap_of_surjective, basicOpen_eq_zeroLocus_of_mul_add, instQuasiSoberElemZeroLocus, ringKrullDim_quotient, vanishingIdeal_zeroLocus_eq_radical, AlgebraicGeometry.Scheme.isoSpec_inv_preimage_zeroLocus, isCompact_isOpen_iff, union_zeroLocus, zeroLocus_diff_singleton_zero, zeroLocus_subset_zeroLocus_iff, zeroLocus_span, isClosed_iff_zeroLocus_radical_ideal, basicOpen_eq_zeroLocus_of_isIdempotentElem, zeroLocus_eq_basicOpen_of_isIdempotentElem, AlgebraicGeometry.Scheme.isoSpec_inv_image_zeroLocus, isIrreducible_zeroLocus_iff_of_radical, preimage_comap_zeroLocus, AlgebraicGeometry.Scheme.toSpecΞ“_preimage_zeroLocus, mem_compl_zeroLocus_iff_notMem, zeroLocus_radical, zeroLocus_minimalPrimes, isIrreducible_zeroLocus_iff, Polynomial.exists_image_comap_of_monic, Polynomial.isOpen_image_comap_of_monic, AlgebraicGeometry.Polynomial.imageOfDf_eq_comap_C_compl_zeroLocus, zeroLocus_insert_zero, Module.support_of_algebra, mem_zeroLocus, preimage_specComap_zeroLocus, zeroLocus_subset_zeroLocus_singleton_iff, subset_vanishingIdeal_zeroLocus, zeroLocus_union, subset_zeroLocus_iff_le_vanishingIdeal, zeroLocus_bUnion, zeroLocus_ideal_mem_irreducibleComponents, zeroLocus_iSup, AlgebraicGeometry.IsAffineOpen.fromSpec_preimage_zeroLocus, image_comap_zeroLocus_eq_zeroLocus_comap, zeroLocus_eq_iff, isOpen_iff, MvPolynomial.pointToPoint_zeroLocus_le, isClosed_iff_zeroLocus_ideal, Polynomial.isCompact_image_comap_of_monic, AlgebraicGeometry.Spec_zeroLocus_eq_zeroLocus, zeroLocus_bot, range_comap_snd, zeroLocus_iUnion, zeroLocus_mul, AlgebraicGeometry.Scheme.toSpecΞ“_image_zeroLocus, preimage_comap_zeroLocus_aux, zeroLocus_smul_of_isUnit, closure_image_comap_zeroLocus, closure_singleton, AlgebraicGeometry.Scheme.IdealSheafData.range_glueDataObjΞΉ, Polynomial.image_comap_C_basicOpen, gc_set, Module.support_quotSMulTop, isRetrocompact_zeroLocus_compl, LocalizedModule.subsingleton_iff_support_subset, AlgebraicGeometry.Spec_zeroLocus, zeroLocus_univ, support_of_supportDim_eq_zero, zeroLocus_iUnionβ‚‚, zeroLocus_singleton_pow, image_specComap_zeroLocus_eq_zeroLocus_comap, basicOpen_eq_zeroLocus_compl, zeroLocus_empty_of_one_mem, Module.support_eq_zeroLocus, zeroLocus_singleton_one, subset_zeroLocus_vanishingIdeal, zeroLocus_singleton_mul, isClopen_iff_zeroLocus, zeroLocus_inf, AlgebraicGeometry.IsAffineOpen.fromSpec_image_zeroLocus, exists_image_comap_of_finite_of_free, zeroLocus_eq_basicOpen_of_mul_add, AlgebraicGeometry.LocallyRingedSpace.toΞ“Spec_preimage_zeroLocus_eq, zeroLocus_sup, mem_image_comap_zeroLocus_sdiff, range_comap_fst, zeroLocus_empty_iff_eq_top, zeroLocus_anti_mono_ideal, zeroLocus_singleton_zero, AlgebraicGeometry.Scheme.isoSpec_image_zeroLocus, subset_zeroLocus_iff_subset_vanishingIdeal, isCompact_isOpen_iff_ideal, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_preimage_zeroLocus, zeroLocus_pow, le_vanishingIdeal_zeroLocus, zeroLocus_vanishingIdeal_eq_closure, zeroLocus_eq_singleton

Theorems

NameKindAssumesProvesValidatesDepends On
asIdeal_bot πŸ“–mathematicalβ€”asIdeal
Bot.bot
PrimeSpectrum
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOrderBotOfIsDomain
Ideal
CommSemiring.toSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
coe_vanishingIdeal πŸ“–mathematicalβ€”SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
setOf
β€”Set.ext
vanishingIdeal.eq_1
SetLike.mem_coe
Submodule.mem_iInf
exists_primeSpectrum_prod_le πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Multiset.prod
CommSemiring.toCommMonoid
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Multiset.map
PrimeSpectrum
asIdeal
β€”IsNoetherian.induction
Multiset.map_singleton
Multiset.prod_singleton
le_refl
le_top
lt_of_le_of_ne
le_sup_left
Ideal.mem_sup_right
Submodule.mem_span_singleton_self
Ideal.not_isPrime_iff
Multiset.map_add
Multiset.prod_add
le_trans
IsScalarTower.right
mul_le_mul'
Submodule.instMulLeftMono
Submodule.instMulRightMono
add_mul
Distrib.rightDistribClass
sup_le
Ideal.mul_le_right
Ideal.instIsTwoSided_1
mul_add
Distrib.leftDistribClass
Ideal.mul_le_left
Submodule.span_mul_span
Set.singleton_mul_singleton
Submodule.span_singleton_le_iff_mem
exists_primeSpectrum_prod_le_and_ne_bot_of_domain πŸ“–mathematicalIsField
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Multiset.prod
CommSemiring.toCommMonoid
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Multiset.map
PrimeSpectrum
asIdeal
β€”IsNoetherian.induction
IsDomain.toNontrivial
Ring.not_isField_iff_exists_prime
le_top
Multiset.map_singleton
Multiset.prod_singleton
le_rfl
Ideal.not_isPrime_iff
lt_of_le_of_ne
le_sup_left
Submodule.mem_sup_right
Submodule.mem_span_singleton_self
ne_bot_of_gt
Multiset.map_add
Multiset.prod_add
le_trans
mul_le_mul'
Submodule.instMulLeftMono
IsScalarTower.right
Submodule.instMulRightMono
add_mul
Distrib.rightDistribClass
sup_le
Ideal.mul_le_right
Ideal.instIsTwoSided_1
mul_add
Distrib.leftDistribClass
Ideal.mul_le_left
Submodule.span_mul_span
Set.singleton_mul_singleton
Submodule.span_singleton_le_iff_mem
IsScalarTower.left
Ideal.mul_eq_bot
IsDomain.to_noZeroDivisors
gc πŸ“–mathematicalβ€”GaloisConnection
Ideal
CommSemiring.toSemiring
OrderDual
Set
PrimeSpectrum
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
OrderDual.instPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
zeroLocus
SetLike.coe
Submodule.setLike
vanishingIdeal
β€”subset_zeroLocus_iff_le_vanishingIdeal
gc_set πŸ“–mathematicalβ€”GaloisConnection
Set
OrderDual
PrimeSpectrum
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
OrderDual.instPreorder
zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
β€”GaloisInsertion.gc
zeroLocus_span
GaloisConnection.compose
gc
instIsEmptyOfSubsingleton πŸ“–mathematicalβ€”IsEmpty
PrimeSpectrum
β€”isEmpty_iff_subsingleton
instNonemptyOfNontrivial πŸ“–mathematicalβ€”PrimeSpectrumβ€”nonempty_iff_nontrivial
isEmpty_iff_subsingleton πŸ“–mathematicalβ€”IsEmpty
PrimeSpectrum
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
nonempty_iff_nontrivial
isMax_iff πŸ“–mathematicalβ€”IsMax
PrimeSpectrum
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Ideal.IsMaximal
CommSemiring.toSemiring
asIdeal
β€”Ideal.IsPrime.ne_top
isPrime
Ideal.exists_le_maximal
IsMax.not_lt
Ideal.IsMaximal.isPrime
LT.lt.trans_le
Eq.ge
Ideal.IsMaximal.eq_of_le
isMin_iff πŸ“–mathematicalβ€”IsMin
PrimeSpectrum
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Ideal
CommSemiring.toSemiring
Set
Set.instMembership
minimalPrimes
asIdeal
β€”isPrime
le_vanishingIdeal_zeroLocus πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
zeroLocus
SetLike.coe
Submodule.setLike
β€”GaloisConnection.le_u_l
gc
mem_compl_zeroLocus_iff_notMem πŸ“–mathematicalβ€”PrimeSpectrum
Set
Set.instMembership
Compl.compl
Set.instCompl
zeroLocus
Set.instSingletonSet
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
asIdeal
β€”Set.mem_compl_iff
mem_zeroLocus
Set.singleton_subset_iff
mem_vanishingIdeal πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
asIdeal
β€”SetLike.mem_coe
coe_vanishingIdeal
Set.mem_setOf_eq
mem_zeroLocus πŸ“–mathematicalβ€”PrimeSpectrum
Set
Set.instMembership
zeroLocus
Set.instHasSubset
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
asIdeal
β€”β€”
nilradical_eq_iInf πŸ“–mathematicalβ€”nilradical
iInf
Ideal
CommSemiring.toSemiring
PrimeSpectrum
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
asIdeal
β€”nilradical_eq_sInf
range_asIdeal
nonempty_iff_nontrivial πŸ“–mathematicalβ€”PrimeSpectrum
Nontrivial
β€”Ideal.IsPrime.ne_top
isPrime
Ideal.eq_top_iff_one
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Ideal.exists_maximal
Ideal.IsMaximal.isPrime
nontrivial πŸ“–mathematicalβ€”Nontrivialβ€”nonempty_iff_nontrivial
primeSpectrumProd_symm_inl_asIdeal πŸ“–mathematicalβ€”asIdeal
Prod.instCommSemiring
DFunLike.coe
Equiv
PrimeSpectrum
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
primeSpectrumProd
Ideal.prod
CommSemiring.toSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
primeSpectrumProd_symm_inr_asIdeal πŸ“–mathematicalβ€”asIdeal
Prod.instCommSemiring
DFunLike.coe
Equiv
PrimeSpectrum
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
primeSpectrumProd
Ideal.prod
CommSemiring.toSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
range_asIdeal πŸ“–mathematicalβ€”Set.range
Ideal
CommSemiring.toSemiring
PrimeSpectrum
asIdeal
setOf
Ideal.IsPrime
β€”Set.ext
Set.mem_range
Set.mem_setOf
isPrime
subset_vanishingIdeal_zeroLocus πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
zeroLocus
β€”GaloisConnection.le_u_l
gc_set
subset_zeroLocus_iff_le_vanishingIdeal πŸ“–mathematicalβ€”Set
PrimeSpectrum
Set.instHasSubset
zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
vanishingIdeal
β€”mem_vanishingIdeal
mem_zeroLocus
le_trans
subset_zeroLocus_iff_subset_vanishingIdeal πŸ“–mathematicalβ€”Set
PrimeSpectrum
Set.instHasSubset
zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
β€”gc_set
subset_zeroLocus_vanishingIdeal πŸ“–mathematicalβ€”Set
PrimeSpectrum
Set.instHasSubset
zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
β€”GaloisConnection.l_u_le
gc
sup_vanishingIdeal_le πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
vanishingIdeal
Set
PrimeSpectrum
Set.instInter
β€”Submodule.mem_sup
mem_vanishingIdeal
Submodule.add_mem
union_zeroLocus πŸ“–mathematicalβ€”Set
PrimeSpectrum
Set.instUnion
zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instMin
Ideal.span
β€”zeroLocus_inf
zeroLocus_span
vanishingIdeal_anti_mono πŸ“–mathematicalSet
PrimeSpectrum
Set.instHasSubset
Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
β€”GaloisConnection.monotone_u
gc
vanishingIdeal_empty πŸ“–mathematicalβ€”vanishingIdeal
Set
PrimeSpectrum
Set.instEmptyCollection
Top.top
Ideal
CommSemiring.toSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”GaloisConnection.u_top
gc
vanishingIdeal_eq_top_iff πŸ“–mathematicalβ€”vanishingIdeal
Top.top
Ideal
CommSemiring.toSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
PrimeSpectrum
Set.instEmptyCollection
β€”top_le_iff
subset_zeroLocus_iff_le_vanishingIdeal
Submodule.top_coe
zeroLocus_univ
Set.subset_empty_iff
vanishingIdeal_iUnion πŸ“–mathematicalβ€”vanishingIdeal
Set.iUnion
PrimeSpectrum
iInf
Ideal
CommSemiring.toSemiring
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”GaloisConnection.u_iInf
gc
vanishingIdeal_singleton πŸ“–mathematicalβ€”vanishingIdeal
PrimeSpectrum
Set
Set.instSingletonSet
asIdeal
β€”iInf_congr_Prop
iInf_iInf_eq_left
vanishingIdeal_union πŸ“–mathematicalβ€”vanishingIdeal
Set
PrimeSpectrum
Set.instUnion
Ideal
CommSemiring.toSemiring
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”GaloisConnection.u_inf
gc
vanishingIdeal_univ πŸ“–mathematicalβ€”vanishingIdeal
Set.univ
PrimeSpectrum
nilradical
β€”vanishingIdeal.eq_1
iInf_univ
nilradical_eq_iInf
vanishingIdeal_zeroLocus_eq_radical πŸ“–mathematicalβ€”vanishingIdeal
zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.radical
β€”Ideal.ext
mem_vanishingIdeal
Ideal.radical_eq_sInf
Submodule.mem_sInf
isPrime
zeroLocus_anti_mono πŸ“–mathematicalSet
Set.instHasSubset
PrimeSpectrum
zeroLocus
β€”GaloisConnection.monotone_l
gc_set
zeroLocus_anti_mono_ideal πŸ“–mathematicalIdeal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
PrimeSpectrum
Set.instHasSubset
zeroLocus
SetLike.coe
Submodule.setLike
β€”GaloisConnection.monotone_l
gc
zeroLocus_bUnion πŸ“–mathematicalβ€”zeroLocus
Set.iUnion
Set
Set.instMembership
Set.iInter
PrimeSpectrum
β€”zeroLocus_iUnion
zeroLocus_bot πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Bot.bot
Submodule.instBot
Set.univ
PrimeSpectrum
β€”GaloisConnection.l_bot
gc
zeroLocus_diff_singleton_zero πŸ“–mathematicalβ€”zeroLocus
Set
Set.instSDiff
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”zeroLocus_insert_zero
Set.insert_diff_singleton
zeroLocus_empty πŸ“–mathematicalβ€”zeroLocus
Set
Set.instEmptyCollection
Set.univ
PrimeSpectrum
β€”GaloisConnection.l_bot
gc_set
zeroLocus_empty_iff_eq_top πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
PrimeSpectrum
Set.instEmptyCollection
Top.top
Submodule.instTop
β€”Mathlib.Tactic.Contrapose.contrapose₁
Ideal.exists_le_maximal
Ideal.IsMaximal.isPrime
zeroLocus_empty_of_one_mem
zeroLocus_empty_of_one_mem πŸ“–mathematicalSet
Set.instMembership
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
zeroLocus
PrimeSpectrum
Set.instEmptyCollection
β€”Set.eq_empty_iff_forall_notMem
isPrime
Ideal.eq_top_iff_one
mem_zeroLocus
Ideal.IsPrime.ne_top
zeroLocus_eq_singleton πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
PrimeSpectrum
Set
Set.instSingletonSet
Ideal.IsPrime
Ideal.IsMaximal.isPrime'
β€”Set.ext
Ideal.IsMaximal.isPrime'
ext_iff
Ideal.IsMaximal.eq_of_le
Ideal.IsPrime.ne_top
isPrime
instIsConcreteLE
Set.mem_singleton_iff
Set.instReflSubset
zeroLocus_eq_univ_iff πŸ“–mathematicalβ€”zeroLocus
Set.univ
PrimeSpectrum
Set
Set.instHasSubset
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
nilradical
β€”Set.univ_subset_iff
subset_zeroLocus_iff_subset_vanishingIdeal
vanishingIdeal_univ
zeroLocus_iSup πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set.iInter
PrimeSpectrum
β€”GaloisConnection.l_iSup
gc
zeroLocus_iUnion πŸ“–mathematicalβ€”zeroLocus
Set.iUnion
Set.iInter
PrimeSpectrum
β€”GaloisConnection.l_iSup
gc_set
zeroLocus_iUnionβ‚‚ πŸ“–mathematicalβ€”zeroLocus
Set.iUnion
Set.iInter
PrimeSpectrum
β€”GaloisConnection.l_iSupβ‚‚
gc_set
zeroLocus_inf πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instMin
Set
PrimeSpectrum
Set.instUnion
β€”Set.ext
Ideal.IsPrime.inf_le
isPrime
zeroLocus_insert_zero πŸ“–mathematicalβ€”zeroLocus
Set
Set.instInsert
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”Set.union_singleton
zeroLocus_union
zeroLocus_singleton_zero
Set.inter_univ
zeroLocus_mul πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.mul
IsScalarTower.right
Algebra.id
Set
PrimeSpectrum
Set.instUnion
β€”Set.ext
IsScalarTower.right
Ideal.IsPrime.mul_le
isPrime
zeroLocus_nilradical πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
nilradical
Set.univ
PrimeSpectrum
β€”nilradical.eq_1
zeroLocus_radical
Ideal.zero_eq_bot
zeroLocus_bot
zeroLocus_pow πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
β€”IsScalarTower.right
zeroLocus_radical
Ideal.radical_pow
zeroLocus_radical πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.radical
β€”GaloisConnection.l_u_l_eq_l
gc
vanishingIdeal_zeroLocus_eq_radical
zeroLocus_singleton_mul πŸ“–mathematicalβ€”zeroLocus
Set
Set.instSingletonSet
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
PrimeSpectrum
Set.instUnion
β€”Set.ext
Ideal.IsPrime.mul_mem_iff_mem_or_mem
Ideal.instIsTwoSided
isPrime
zeroLocus_singleton_one πŸ“–mathematicalβ€”zeroLocus
Set
Set.instSingletonSet
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
PrimeSpectrum
Set.instEmptyCollection
β€”zeroLocus_empty_of_one_mem
Set.mem_singleton
zeroLocus_singleton_pow πŸ“–mathematicalβ€”zeroLocus
Set
Set.instSingletonSet
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
β€”Set.ext
Ideal.IsPrime.pow_mem_iff_mem
isPrime
zeroLocus_singleton_zero πŸ“–mathematicalβ€”zeroLocus
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Set.univ
PrimeSpectrum
β€”zeroLocus_bot
zeroLocus_smul_of_isUnit πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
zeroLocus
Set
Set.smulSet
Algebra.toSMul
Algebra.id
β€”Set.ext
Set.image_congr
Ideal.unit_mul_mem_iff_mem
zeroLocus_span πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.span
β€”Set.ext
GaloisInsertion.gc
zeroLocus_subset_zeroLocus_iff πŸ“–mathematicalβ€”Set
PrimeSpectrum
Set.instHasSubset
zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Ideal.radical
β€”subset_zeroLocus_iff_le_vanishingIdeal
vanishingIdeal_zeroLocus_eq_radical
zeroLocus_subset_zeroLocus_singleton_iff πŸ“–mathematicalβ€”Set
PrimeSpectrum
Set.instHasSubset
zeroLocus
Set.instSingletonSet
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.radical
Ideal.span
β€”zeroLocus_span
zeroLocus_subset_zeroLocus_iff
Ideal.span_le
Set.singleton_subset_iff
SetLike.mem_coe
zeroLocus_sup πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
Set
PrimeSpectrum
Set.instInter
β€”GaloisConnection.l_sup
gc
zeroLocus_union πŸ“–mathematicalβ€”zeroLocus
Set
Set.instUnion
PrimeSpectrum
Set.instInter
β€”GaloisConnection.l_sup
gc_set
zeroLocus_univ πŸ“–mathematicalβ€”zeroLocus
Set.univ
Set
PrimeSpectrum
Set.instEmptyCollection
β€”zeroLocus_empty_of_one_mem
Set.mem_univ

---

← Back to Index