Documentation

Mathlib.AlgebraicGeometry.PullbackCarrier

Underlying topological space of fibre product of schemes #

Let f : X ⟶ S and g : Y ⟶ S be morphisms of schemes. In this file we describe the underlying topological space of pullback f g, i.e. the fiber product X ×[S] Y.

Main results #

We also give the ranges of pullback.fst, pullback.snd and pullback.map.

structure AlgebraicGeometry.Scheme.Pullback.Triplet {X Y S : Scheme} (f : X S) (g : Y S) :

A Triplet over f : X ⟶ S and g : Y ⟶ S is a triple of points x : X, y : Y, s : S such that f x = s = f y.

  • x : X

    The point of X.

  • y : Y

    The point of Y.

  • s : S

    The point of S below x and y.

  • hx : f self.x = self.s
  • hy : g self.y = self.s
Instances For
    theorem AlgebraicGeometry.Scheme.Pullback.Triplet.ext {X Y S : Scheme} {f : X S} {g : Y S} {t₁ t₂ : Triplet f g} (ex : t₁.x = t₂.x) (ey : t₁.y = t₂.y) :
    t₁ = t₂
    theorem AlgebraicGeometry.Scheme.Pullback.Triplet.ext_iff {X Y S : Scheme} {f : X S} {g : Y S} {t₁ t₂ : Triplet f g} :
    t₁ = t₂ t₁.x = t₂.x t₁.y = t₂.y
    def AlgebraicGeometry.Scheme.Pullback.Triplet.mk' {X Y S : Scheme} {f : X S} {g : Y S} (x : X) (y : Y) (h : f x = g y) :

    Make a triplet from x : X and y : Y such that f x = g y.

    Equations
      Instances For
        @[simp]
        theorem AlgebraicGeometry.Scheme.Pullback.Triplet.mk'_s {X Y S : Scheme} {f : X S} {g : Y S} (x : X) (y : Y) (h : f x = g y) :
        (mk' x y h).s = g y
        @[simp]
        theorem AlgebraicGeometry.Scheme.Pullback.Triplet.mk'_y {X Y S : Scheme} {f : X S} {g : Y S} (x : X) (y : Y) (h : f x = g y) :
        (mk' x y h).y = y
        @[simp]
        theorem AlgebraicGeometry.Scheme.Pullback.Triplet.mk'_x {X Y S : Scheme} {f : X S} {g : Y S} (x : X) (y : Y) (h : f x = g y) :
        (mk' x y h).x = x

        Given x : X and y : Y such that f x = s = g y, this is κ(x) ⊗[κ(s)] κ(y).

        Equations
          Instances For

            Given x : X and y : Y such that f x = s = g y, this is the canonical map κ(x) ⟶ κ(x) ⊗[κ(s)] κ(y).

            Equations
              Instances For

                Given x : X and y : Y such that f x = s = g y, this is the canonical map κ(y) ⟶ κ(x) ⊗[κ(s)] κ(y).

                Equations
                  Instances For
                    def AlgebraicGeometry.Scheme.Pullback.Triplet.tensorCongr {X Y S : Scheme} {f : X S} {g : Y S} {T₁ T₂ : Triplet f g} (e : T₁ = T₂) :
                    T₁.tensor T₂.tensor

                    Given propositionally equal triplets T₁ and T₂ over f and g, the corresponding T₁.tensor and T₂.tensor are isomorphic.

                    Equations
                      Instances For
                        @[simp]
                        theorem AlgebraicGeometry.Scheme.Pullback.Triplet.tensorCongr_symm {X Y S : Scheme} {f : X S} {g : Y S} {x y : Triplet f g} (e : x = y) :
                        @[simp]
                        theorem AlgebraicGeometry.Scheme.Pullback.Triplet.tensorCongr_inv {X Y S : Scheme} {f : X S} {g : Y S} {x y : Triplet f g} (e : x = y) :
                        @[simp]
                        theorem AlgebraicGeometry.Scheme.Pullback.Triplet.tensorCongr_trans {X Y S : Scheme} {f : X S} {g : Y S} {x y z : Triplet f g} (e : x = y) (e' : y = z) :

                        Given x : X, y : Y and s : S such that f x = s = g y, this is Spec (κ(x) ⊗[κ(s)] κ(y)) ⟶ X ×ₛ Y.

                        Equations
                          Instances For
                            @[deprecated AlgebraicGeometry.Scheme.Pullback.Triplet.fst_SpecTensorTo_apply (since := "2025-10-11")]

                            Alias of AlgebraicGeometry.Scheme.Pullback.Triplet.fst_SpecTensorTo_apply.

                            @[deprecated AlgebraicGeometry.Scheme.Pullback.Triplet.snd_SpecTensorTo_apply (since := "2025-10-11")]

                            Alias of AlgebraicGeometry.Scheme.Pullback.Triplet.snd_SpecTensorTo_apply.

                            Given t : X ×[S] Y, it maps to X and Y with same image in S, yielding a Triplet f g.

                            Equations
                              Instances For
                                @[simp]
                                theorem AlgebraicGeometry.Scheme.Pullback.Triplet.ofPoint_SpecTensorTo {X Y S : Scheme} {f : X S} {g : Y S} (T : Triplet f g) (p : (Spec T.tensor)) :

                                Given t : X ×[S] Y with projections to X, Y and S denoted by x, y and s respectively, this is the canonical map κ(x) ⊗[κ(s)] κ(y) ⟶ κ(t).

                                Equations
                                  Instances For

                                    If t is a point in X ×[S] Y above (x, y, s), then this is the image of the unique point of Spec κ(s) in Spec κ(x) ⊗[κ(s)] κ(y).

                                    Equations
                                      Instances For
                                        theorem AlgebraicGeometry.Scheme.Pullback.carrierEquiv_eq_iff {X Y S : Scheme} {f : X S} {g : Y S} {T₁ T₂ : (T : Triplet f g) × (Spec T.tensor)} :
                                        T₁ = T₂ ∃ (e : T₁.fst = T₂.fst), (Spec.map (Triplet.tensorCongr e).inv) T₁.snd = T₂.snd

                                        A helper lemma to work with AlgebraicGeometry.Scheme.Pullback.carrierEquiv.

                                        def AlgebraicGeometry.Scheme.Pullback.carrierEquiv {X Y S : Scheme} {f : X S} {g : Y S} :

                                        The points of the underlying topological space of X ×[S] Y bijectively correspond to pairs of triples x : X, y : Y, s : S with f x = s = f y and prime ideals of κ(x) ⊗[κ(s)] κ(y).

                                        Equations
                                          Instances For

                                            Given a triple (x, y, s) with f x = s = f y there exists t : X ×[S] Y above x and . For the unpacked version without Triplet, see AlgebraicGeometry.Scheme.Pullback.exists_preimage.

                                            theorem AlgebraicGeometry.Scheme.Pullback.exists_preimage_pullback {X Y S : Scheme} {f : X S} {g : Y S} (x : X) (y : Y) (h : f x = g y) :

                                            If f : X ⟶ S and g : Y ⟶ S are morphisms of schemes and x : X and y : Y are points such that f x = g y, then there exists z : X ×[S] Y lying above x and y.

                                            In other words, the map from the underlying topological space of X ×[S] Y to the fiber product of the underlying topological spaces of X and Y over S is surjective.

                                            theorem AlgebraicGeometry.Scheme.Pullback.range_map {X Y S : Scheme} (f : X S) (g : Y S) {X' Y' S' : Scheme} (f' : X' S') (g' : Y' S') (i₁ : X X') (i₂ : Y Y') (i₃ : S S') (e₁ : CategoryTheory.CategoryStruct.comp f i₃ = CategoryTheory.CategoryStruct.comp i₁ f') (e₂ : CategoryTheory.CategoryStruct.comp g i₃ = CategoryTheory.CategoryStruct.comp i₂ g') [CategoryTheory.Mono i₃] :

                                            The comparison map for pullbacks under the forgetful functor Scheme ⥤ Type u is surjective.

                                            @[deprecated AlgebraicGeometry.Scheme.pullbackComparison_forget_surjective (since := "2025-10-06")]

                                            Alias of AlgebraicGeometry.Scheme.pullbackComparison_forget_surjective.


                                            The comparison map for pullbacks under the forgetful functor Scheme ⥤ Type u is surjective.

                                            theorem AlgebraicGeometry.Scheme.exists_preimage_of_isPullback {P X Y Z : Scheme} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) (x : X) (y : Y) (hxy : f x = g y) :
                                            ∃ (p : P), fst p = x snd p = y
                                            theorem AlgebraicGeometry.Scheme.image_preimage_eq_of_isPullback {P X Y Z : Scheme} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) (s : Set X) :
                                            snd '' (fst ⁻¹' s) = g ⁻¹' (f '' s)