Documentation

Mathlib.AlgebraicGeometry.Restrict

Restriction of Schemes and Morphisms #

Main definition #

Open subset of a scheme as a scheme.

Equations
    Instances For

      The restriction of a scheme to an open subset.

      Equations
        Instances For
          @[simp]
          theorem AlgebraicGeometry.Scheme.Opens.ι_apply {X : Scheme} (U : X.Opens) (x : U) :
          U.ι x = x
          @[deprecated AlgebraicGeometry.Scheme.Opens.ι_apply (since := "2025-10-07")]
          theorem AlgebraicGeometry.Scheme.Opens.ι_base_apply {X : Scheme} (U : X.Opens) (x : U) :
          U.ι x = x

          Alias of AlgebraicGeometry.Scheme.Opens.ι_apply.

          theorem AlgebraicGeometry.Scheme.Opens.forall_toScheme {X : Scheme} {U : X.Opens} {P : UProp} :
          (∀ (x : U), P x) ∀ (x : X) (hx : x U), P x, hx
          theorem AlgebraicGeometry.Scheme.Opens.exists_toScheme {X : Scheme} {U : X.Opens} {P : UProp} :
          (∃ (x : U), P x) ∃ (x : X) (hx : x U), P x, hx
          @[simp]
          theorem AlgebraicGeometry.Scheme.Opens.mem_ι_image_iff {X : Scheme} (U : X.Opens) {x : U} {V : (↑U).Opens} :
          x (Hom.opensFunctor U.ι).obj V x V

          The global sections of the restriction is isomorphic to the sections on the open set.

          Equations
            Instances For
              def AlgebraicGeometry.Scheme.Opens.stalkIso {X : Scheme} (U : X.Opens) (x : U) :
              (↑U).presheaf.stalk x X.presheaf.stalk x

              The stalks of an open subscheme are isomorphic to the stalks of the original scheme.

              Equations
                Instances For
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.Opens.germ_stalkIso_hom {X : Scheme} (U : X.Opens) {V : (↑U).Opens} (x : U) (hx : x V) :

                  If U is a family of open sets that covers X, then X.restrict U forms an X.open_cover.

                  Equations
                    Instances For
                      @[simp]
                      theorem AlgebraicGeometry.Scheme.openCoverOfIsOpenCover_X {s : Type u_1} (X : Scheme) (U : sX.Opens) (hU : TopologicalSpace.IsOpenCover U) (i : s) :
                      (X.openCoverOfIsOpenCover U hU).X i = (U i)
                      @[deprecated AlgebraicGeometry.Scheme.openCoverOfIsOpenCover (since := "2025-09-30")]

                      Alias of AlgebraicGeometry.Scheme.openCoverOfIsOpenCover.


                      If U is a family of open sets that covers X, then X.restrict U forms an X.open_cover.

                      Equations
                        Instances For
                          def AlgebraicGeometry.opensRestrict {X : Scheme} (U : X.Opens) :
                          (↑U).Opens { V : X.Opens // V U }

                          The open sets of an open subscheme corresponds to the open sets containing in the subset.

                          Equations
                            Instances For
                              @[simp]
                              theorem AlgebraicGeometry.coe_opensRestrict_apply_coe {X : Scheme} (U : X.Opens) (a✝ : (↑U).Opens) :
                              ((opensRestrict U) a✝) = (fun (a : U) => a) '' a✝
                              @[simp]
                              theorem AlgebraicGeometry.coe_opensRestrict_symm_apply {X : Scheme} (U : X.Opens) (a✝ : { V : X.Opens // V U }) :
                              ((opensRestrict U).symm a✝) = U.ι ⁻¹' ((Equiv.subtypeEquivProp ).symm a✝)

                              A variant where r is first mapped into Γ(X, U) before taking the basic open.

                              @[deprecated AlgebraicGeometry.Scheme.Opens.ι_image_basicOpen' (since := "2025-10-07")]

                              Alias of AlgebraicGeometry.Scheme.Opens.ι_image_basicOpen'.


                              A variant where r is first mapped into Γ(X, U) before taking the basic open.

                              @[deprecated AlgebraicGeometry.Scheme.Opens.ι_image_basicOpen_topIso_inv (since := "2025-10-07")]

                              Alias of AlgebraicGeometry.Scheme.Opens.ι_image_basicOpen_topIso_inv.

                              @[simp]
                              theorem AlgebraicGeometry.Scheme.Opens.mem_basicOpen_toScheme {X : Scheme} {U : X.Opens} {V : (↑U).Opens} {r : ((↑U).presheaf.obj (Opposite.op V))} {x : U} :
                              x (↑U).basicOpen r x X.basicOpen r
                              noncomputable def AlgebraicGeometry.Scheme.homOfLE (X : Scheme) {U V : X.Opens} (e : U V) :
                              U V

                              If U ≤ V, then U is also a subscheme of V.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem AlgebraicGeometry.Scheme.homOfLE_homOfLE (X : Scheme) {U V W : X.Opens} (e₁ : U V) (e₂ : V W) :
                                  @[simp]
                                  theorem AlgebraicGeometry.Scheme.homOfLE_apply {X : Scheme} {U V : X.Opens} (e : U V) (x : U) :
                                  ((X.homOfLE e) x) = x
                                  @[simp]
                                  theorem AlgebraicGeometry.Scheme.homOfLE_app {X : Scheme} {U V : X.Opens} (e : U V) (W : (↑V).Opens) :
                                  @[simp]
                                  theorem AlgebraicGeometry.Scheme.homOfLE_appLE {X : Scheme} {U V : X.Opens} (e : U V) (W : (↑V).Opens) (W' : (↑U).Opens) (e' : W' (TopologicalSpace.Opens.map (X.homOfLE e).base).obj W) :
                                  def AlgebraicGeometry.Scheme.Opens.iSupOpenCover {J : Type u_1} {X : Scheme} (U : JX.Opens) :
                                  (↑(⨆ (i : J), U i)).OpenCover

                                  The open cover of ⋃ Vᵢ by Vᵢ.

                                  Equations
                                    Instances For

                                      The functor taking open subsets of X to open subschemes of X.

                                      Equations
                                        Instances For

                                          The functor that restricts to open subschemes and then takes global section is isomorphic to the structure sheaf.

                                          Equations
                                            Instances For

                                              X ∣_ U ∣_ V is isomorphic to X ∣_ V ∣_ U

                                              Equations
                                                Instances For
                                                  noncomputable def AlgebraicGeometry.Scheme.Hom.isoImage {X Y : Scheme} (f : X Y) [IsOpenImmersion f] (U : X.Opens) :
                                                  U ((opensFunctor f).obj U)

                                                  If f : X ⟶ Y is an open immersion, then for any U : X.Opens, we have the isomorphism U ≅ f ''ᵁ U.

                                                  Equations
                                                    Instances For

                                                      If f : X ⟶ Y is an open immersion, then X is isomorphic to its image in Y.

                                                      Equations
                                                        Instances For

                                                          (⊤ : X.Opens) as a scheme is isomorphic to X.

                                                          Equations
                                                            Instances For
                                                              noncomputable def AlgebraicGeometry.Scheme.isoOfEq (X : Scheme) {U V : X.Opens} (e : U = V) :
                                                              U V

                                                              If U = V, then X ∣_ U is isomorphic to X ∣_ V.

                                                              Equations
                                                                Instances For

                                                                  The restriction of an isomorphism onto an open set.

                                                                  Equations
                                                                    Instances For
                                                                      noncomputable def AlgebraicGeometry.Scheme.Opens.isoOfLE {X : Scheme} {U V : X.Opens} (hUV : U V) :

                                                                      If U ≤ V are opens of X, the restriction of U to V is isomorphic to U.

                                                                      Equations
                                                                        Instances For

                                                                          For f : R, D(f) as an open subscheme of Spec R is isomorphic to Spec R[1/f].

                                                                          Equations
                                                                            Instances For

                                                                              Given a morphism f : X ⟶ Y and an open set U ⊆ Y, we have X ×[Y] U ≅ X |_{f ⁻¹ U}

                                                                              Equations
                                                                                Instances For

                                                                                  The restriction of a morphism X ⟶ Y onto X |_{f ⁻¹ U} ⟶ Y |_ U.

                                                                                  Equations
                                                                                    Instances For

                                                                                      the notation for restricting a morphism of scheme to an open subset of the target scheme

                                                                                      Equations
                                                                                        Instances For
                                                                                          theorem AlgebraicGeometry.isPullback_opens_inf_le {X : Scheme} {U V W : X.Opens} (hU : U W) (hV : V W) :
                                                                                          @[simp]
                                                                                          theorem AlgebraicGeometry.morphismRestrict_base_coe {X Y : Scheme} (f : X Y) (U : Y.Opens) (x : ((TopologicalSpace.Opens.map f.base).obj U)) :
                                                                                          ((f ∣_ U) x) = f x
                                                                                          @[deprecated AlgebraicGeometry.morphismRestrict_appTop (since := "2025-10-14")]

                                                                                          Alias of AlgebraicGeometry.morphismRestrict_appTop.

                                                                                          Restricting a morphism onto the image of an open immersion is isomorphic to the base change along the immersion.

                                                                                          Equations
                                                                                            Instances For

                                                                                              The restrictions onto two equal open sets are isomorphic. This currently has bad defeqs when unfolded, but it should not matter for now. Replace this definition if better defeqs are needed.

                                                                                              Equations
                                                                                                Instances For

                                                                                                  Restricting a morphism twice is isomorphic to one restriction.

                                                                                                  Equations
                                                                                                    Instances For

                                                                                                      Restricting a morphism twice onto a basic open set is isomorphic to one restriction.

                                                                                                      Equations
                                                                                                        Instances For

                                                                                                          The stalk map of a restriction of a morphism is isomorphic to the stalk map of the original map.

                                                                                                          Equations
                                                                                                            Instances For
                                                                                                              def AlgebraicGeometry.Scheme.Hom.resLE {X Y : Scheme} (f : X.Hom Y) (U : Y.Opens) (V : X.Opens) (e : V (TopologicalSpace.Opens.map f.base).obj U) :
                                                                                                              V U

                                                                                                              The restriction of a morphism f : X ⟶ Y to open sets on the source and target.

                                                                                                              Equations
                                                                                                                Instances For
                                                                                                                  @[simp]
                                                                                                                  theorem AlgebraicGeometry.Scheme.Hom.map_resLE {X Y : Scheme} (f : X Y) {U : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : V' V) :
                                                                                                                  @[simp]
                                                                                                                  theorem AlgebraicGeometry.Scheme.Hom.resLE_map {X Y : Scheme} (f : X Y) {U U' : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : U U') :
                                                                                                                  theorem AlgebraicGeometry.Scheme.Hom.resLE_congr {X Y : Scheme} (f : X Y) {U U' : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (e₁ : U = U') (e₂ : V = V') (P : CategoryTheory.MorphismProperty Scheme) :
                                                                                                                  P (resLE f U V e) P (resLE f U' V' )
                                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.le_resLE_preimage_iff (since := "2025-10-07")]

                                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.le_resLE_preimage_iff.

                                                                                                                  theorem AlgebraicGeometry.Scheme.Hom.resLE_appLE {X Y : Scheme} (f : X Y) {U : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (O : (↑U).Opens) (W : (↑V).Opens) (e' : W (TopologicalSpace.Opens.map (resLE f U V e).base).obj O) :
                                                                                                                  appLE (resLE f U V e) O W e' = appLE f ((opensFunctor U.ι).obj O) ((opensFunctor V.ι).obj W)
                                                                                                                  @[simp]
                                                                                                                  theorem AlgebraicGeometry.Scheme.Hom.coe_resLE_apply {X Y : Scheme} (f : X Y) {U : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (x : V) :
                                                                                                                  ((resLE f U V e) x) = f x
                                                                                                                  @[deprecated AlgebraicGeometry.Scheme.Hom.coe_resLE_apply (since := "2025-10-07")]
                                                                                                                  theorem AlgebraicGeometry.Scheme.Hom.coe_resLE_base {X Y : Scheme} (f : X Y) {U : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (x : V) :
                                                                                                                  ((resLE f U V e) x) = f x

                                                                                                                  Alias of AlgebraicGeometry.Scheme.Hom.coe_resLE_apply.

                                                                                                                  The stalk map of f.resLE U V at x : V is the stalk map of f at x.

                                                                                                                  Equations
                                                                                                                    Instances For

                                                                                                                      f.resLE U V induces f.appLE U V on global sections.

                                                                                                                      Equations
                                                                                                                        Instances For
                                                                                                                          theorem AlgebraicGeometry.Scheme.Hom.isPullback_resLE {X Y S T : Scheme} {f : T S} {g : Y X} {iX : X S} {iY : Y T} (H : CategoryTheory.IsPullback g iY iX f) {US : S.Opens} {UT : T.Opens} {UX : X.Opens} (hUST : UT (TopologicalSpace.Opens.map f.base).obj US) (hUSX : UX (TopologicalSpace.Opens.map iX.base).obj US) {UY : Y.Opens} (hUY : UY = (TopologicalSpace.Opens.map g.base).obj UX(TopologicalSpace.Opens.map iY.base).obj UT) :
                                                                                                                          CategoryTheory.IsPullback (resLE g UX UY ) (resLE iY UT UY ) (resLE iX US UX hUSX) (resLE f US UT hUST)
                                                                                                                          noncomputable def AlgebraicGeometry.Scheme.OpenCover.restrict {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) :
                                                                                                                          (↑U).OpenCover

                                                                                                                          The restriction of an open cover to an open subset.

                                                                                                                          Equations
                                                                                                                            Instances For
                                                                                                                              @[simp]
                                                                                                                              theorem AlgebraicGeometry.Scheme.OpenCover.restrict_X {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) (x✝ : 𝒰.I₀) :
                                                                                                                              (𝒰.restrict U).X x✝ = ((TopologicalSpace.Opens.map (𝒰.f x✝).base).obj U)
                                                                                                                              @[simp]
                                                                                                                              theorem AlgebraicGeometry.Scheme.OpenCover.restrict_f {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) (x✝ : 𝒰.I₀) :
                                                                                                                              (𝒰.restrict U).f x✝ = 𝒰.f x✝ ∣_ U