Documentation Verification Report

LeftHomotopy

๐Ÿ“ Source: Mathlib/AlgebraicTopology/ModelCategory/LeftHomotopy.lean

Statistics

MetricCount
DefinitionsLeftHomotopy, postcomp, refl, trans, LeftHomotopyClass, mk, postcomp, LeftHomotopyRel, LeftHomotopy, h, postcomp, refl, trans
13
Theoremscovering_homotopy, exists_good_cylinder, leftHomotopyRel, weakEquivalence_iff, mk_eq_mk_iff, mk_surjective, postcomp_mk, sound, equivalence, exists_good_cylinder, exists_very_good_cylinder, factorsThroughLocalization, postcomp, precomp, refl, trans, hโ‚€, hโ‚€_assoc, hโ‚, hโ‚_assoc, postcomp_h, refl_h, symm_h, trans_h
24
Total37

HomotopicalAlgebra

Definitions

NameCategoryTheorems
LeftHomotopyClass ๐Ÿ“–CompOp
6 mathmath: BifibrantObject.HoCat.homEquivLeft_apply, leftHomotopyClassEquivRightHomotopyClass_symm_mk, LeftHomotopyClass.postcomp_bijective_of_weakEquivalence, LeftHomotopyClass.postcomp_bijective_of_fibration_of_weakEquivalence, LeftHomotopyClass.mk_surjective, leftHomotopyClassEquivRightHomotopyClass_mk
LeftHomotopyRel ๐Ÿ“–CompOp
10 mathmath: LeftHomotopyClass.mk_eq_mk_iff, LeftHomotopyClass.whitehead, Cylinder.LeftHomotopy.leftHomotopyRel, FibrantObject.homRel_iff_leftHomotopyRel, LeftHomotopyRel.factorsThroughLocalization, BifibrantObject.homRel_iff_leftHomotopyRel, leftHomotopyRel_iff_rightHomotopyRel, RightHomotopyRel.leftHomotopyRel, LeftHomotopyRel.equivalence, LeftHomotopyRel.refl

HomotopicalAlgebra.Cylinder

Definitions

NameCategoryTheorems
LeftHomotopy ๐Ÿ“–CompOp
3 mathmath: HomotopicalAlgebra.LeftHomotopyRel.exists_good_cylinder, LeftHomotopy.exists_good_cylinder, HomotopicalAlgebra.LeftHomotopyRel.exists_very_good_cylinder

HomotopicalAlgebra.Cylinder.LeftHomotopy

Definitions

NameCategoryTheorems
postcomp ๐Ÿ“–CompOpโ€”
refl ๐Ÿ“–CompOpโ€”
trans ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
covering_homotopy ๐Ÿ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
HomotopicalAlgebra.Precylinder.I
HomotopicalAlgebra.Cylinder.toPrecylinder
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
HomotopicalAlgebra.Precylinder.LeftHomotopy.h
โ€”CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
HomotopicalAlgebra.Precylinder.LeftHomotopy.hโ‚€
CategoryTheory.sq_hasLift_of_hasLiftingProperty
HomotopicalAlgebra.ModelCategory.cm4a
HomotopicalAlgebra.Cylinder.instCofibrationIโ‚€
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
HomotopicalAlgebra.instIsMultiplicativeCofibrations
HomotopicalAlgebra.ModelCategory.instIsWeakFactorizationSystemCofibrationsTrivialFibrations
HomotopicalAlgebra.instIsStableUnderCobaseChangeCofibrations
HomotopicalAlgebra.Cylinder.instWeakEquivalenceIโ‚€
HomotopicalAlgebra.ModelCategory.cm2
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
HomotopicalAlgebra.instIsMultiplicativeWeakEquivalencesOfIsWeakFactorizationSystemTrivialCofibrationsFibrationsOfIsStableUnderRetractsOfIsStableUnderComposition
HomotopicalAlgebra.ModelCategory.instIsWeakFactorizationSystemTrivialCofibrationsFibrations
HomotopicalAlgebra.ModelCategory.cm3a
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
CategoryTheory.CommSq.fac_left
CategoryTheory.CommSq.fac_right
exists_good_cylinder ๐Ÿ“–mathematicalโ€”HomotopicalAlgebra.Cylinder.IsGood
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.Cylinder.LeftHomotopy
โ€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
HomotopicalAlgebra.ModelCategory.cm5b
CategoryTheory.Category.assoc
CategoryTheory.MorphismProperty.MapFactorizationData.fac_assoc
HomotopicalAlgebra.Precylinder.inl_i_assoc
HomotopicalAlgebra.Precylinder.iโ‚€_ฯ€
HomotopicalAlgebra.Precylinder.inr_i_assoc
HomotopicalAlgebra.Precylinder.iโ‚_ฯ€
HomotopicalAlgebra.instWeakEquivalenceCompOfIsStableUnderCompositionWeakEquivalences
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
HomotopicalAlgebra.ModelCategory.cm2
HomotopicalAlgebra.instWeakEquivalencePCofibrationsTrivialFibrations
HomotopicalAlgebra.Cylinder.weakEquivalence_ฯ€
HomotopicalAlgebra.cofibration_iff
CategoryTheory.Limits.coprod.hom_ext
HomotopicalAlgebra.Precylinder.inl_i
HomotopicalAlgebra.Precylinder.inr_i
CategoryTheory.MorphismProperty.MapFactorizationData.hi
HomotopicalAlgebra.Precylinder.LeftHomotopy.hโ‚€
HomotopicalAlgebra.Precylinder.LeftHomotopy.hโ‚
leftHomotopyRel ๐Ÿ“–mathematicalโ€”HomotopicalAlgebra.LeftHomotopyRelโ€”โ€”
weakEquivalence_iff ๐Ÿ“–mathematicalโ€”HomotopicalAlgebra.WeakEquivalenceโ€”HomotopicalAlgebra.weakEquivalence_of_precomp_of_fac
HomotopicalAlgebra.Precylinder.LeftHomotopy.hโ‚€
HomotopicalAlgebra.Cylinder.instWeakEquivalenceIโ‚€
HomotopicalAlgebra.Precylinder.LeftHomotopy.hโ‚
HomotopicalAlgebra.instWeakEquivalenceCompOfIsStableUnderCompositionWeakEquivalences
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
HomotopicalAlgebra.Cylinder.instWeakEquivalenceIโ‚

HomotopicalAlgebra.LeftHomotopyClass

Definitions

NameCategoryTheorems
mk ๐Ÿ“–CompOpโ€”
postcomp ๐Ÿ“–CompOp
3 mathmath: postcomp_mk, postcomp_bijective_of_weakEquivalence, postcomp_bijective_of_fibration_of_weakEquivalence

Theorems

NameKindAssumesProvesValidatesDepends On
mk_eq_mk_iff ๐Ÿ“–mathematicalโ€”HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
HomotopicalAlgebra.LeftHomotopyRel
โ€”CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
Equivalence.eqvGen_iff
HomotopicalAlgebra.LeftHomotopyRel.equivalence
Quot.eq
mk_surjective ๐Ÿ“–mathematicalโ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.LeftHomotopyClass
โ€”Quot.mk_surjective
postcomp_mk ๐Ÿ“–mathematicalโ€”postcomp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
โ€”โ€”
sound ๐Ÿ“–โ€”HomotopicalAlgebra.LeftHomotopyRelโ€”โ€”โ€”

HomotopicalAlgebra.LeftHomotopyRel

Theorems

NameKindAssumesProvesValidatesDepends On
equivalence ๐Ÿ“–mathematicalโ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.LeftHomotopyRel
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
โ€”CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
refl
symm
trans
exists_good_cylinder ๐Ÿ“–mathematicalHomotopicalAlgebra.LeftHomotopyRel
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
HomotopicalAlgebra.Cylinder.IsGood
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.Cylinder.LeftHomotopy
โ€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
HomotopicalAlgebra.Cylinder.LeftHomotopy.exists_good_cylinder
exists_very_good_cylinder ๐Ÿ“–mathematicalHomotopicalAlgebra.LeftHomotopyRel
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
HomotopicalAlgebra.Cylinder.IsVeryGood
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
HomotopicalAlgebra.Cylinder.LeftHomotopy
โ€”CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
exists_good_cylinder
HomotopicalAlgebra.ModelCategory.cm5a
CategoryTheory.Category.assoc
CategoryTheory.MorphismProperty.MapFactorizationData.fac
HomotopicalAlgebra.Precylinder.iโ‚€_ฯ€
HomotopicalAlgebra.Precylinder.iโ‚_ฯ€
HomotopicalAlgebra.weakEquivalence_of_precomp_of_fac
HomotopicalAlgebra.ModelCategory.cm2
HomotopicalAlgebra.instWeakEquivalenceITrivialCofibrationsFibrations
HomotopicalAlgebra.Cylinder.weakEquivalence_ฯ€
CategoryTheory.Limits.coprod.hom_ext
HomotopicalAlgebra.Precylinder.inl_i
HomotopicalAlgebra.Precylinder.inl_i_assoc
HomotopicalAlgebra.Precylinder.inr_i
HomotopicalAlgebra.Precylinder.inr_i_assoc
HomotopicalAlgebra.instCofibrationCompOfIsStableUnderCompositionCofibrations
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
HomotopicalAlgebra.instIsMultiplicativeCofibrations
HomotopicalAlgebra.ModelCategory.instIsWeakFactorizationSystemCofibrationsTrivialFibrations
HomotopicalAlgebra.Cylinder.IsGood.cofibration_i
HomotopicalAlgebra.instCofibrationITrivialCofibrationsFibrations
CategoryTheory.Limits.terminal.comp_from
HomotopicalAlgebra.instFibrationPTrivialCofibrationsFibrations
CategoryTheory.sq_hasLift_of_hasLiftingProperty
HomotopicalAlgebra.ModelCategory.cm4a
CategoryTheory.CommSq.fac_left
HomotopicalAlgebra.Precylinder.LeftHomotopy.hโ‚€
HomotopicalAlgebra.Precylinder.LeftHomotopy.hโ‚
factorsThroughLocalization ๐Ÿ“–mathematicalโ€”HomRel.FactorsThroughLocalization
HomotopicalAlgebra.LeftHomotopyRel
HomotopicalAlgebra.weakEquivalences
โ€”CategoryTheory.areEqualizedByLocalization_iff
CategoryTheory.Functor.q_isLocalization
CategoryTheory.Localization.inverts
HomotopicalAlgebra.weakEquivalence_iff
HomotopicalAlgebra.Cylinder.weakEquivalence_ฯ€
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Functor.map_comp
HomotopicalAlgebra.Precylinder.iโ‚€_ฯ€
CategoryTheory.Functor.map_id
HomotopicalAlgebra.Precylinder.iโ‚_ฯ€
HomotopicalAlgebra.Precylinder.LeftHomotopy.hโ‚€
HomotopicalAlgebra.Precylinder.LeftHomotopy.hโ‚
postcomp ๐Ÿ“–mathematicalHomotopicalAlgebra.LeftHomotopyRelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
โ€”HomotopicalAlgebra.Cylinder.LeftHomotopy.leftHomotopyRel
precomp ๐Ÿ“–mathematicalHomotopicalAlgebra.LeftHomotopyRel
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
โ€”CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
exists_very_good_cylinder
HomotopicalAlgebra.Cylinder.exists_very_good
CategoryTheory.Limits.coprod.desc_comp
CategoryTheory.Category.assoc
HomotopicalAlgebra.Precylinder.iโ‚€_ฯ€
CategoryTheory.Category.comp_id
HomotopicalAlgebra.Precylinder.iโ‚_ฯ€
CategoryTheory.Limits.coprod.hom_ext
CategoryTheory.Limits.colimit.ฮน_desc
HomotopicalAlgebra.Precylinder.inl_i_assoc
HomotopicalAlgebra.Precylinder.iโ‚€_ฯ€_assoc
HomotopicalAlgebra.Precylinder.inr_i_assoc
HomotopicalAlgebra.Precylinder.iโ‚_ฯ€_assoc
CategoryTheory.sq_hasLift_of_hasLiftingProperty
HomotopicalAlgebra.ModelCategory.cm4b
HomotopicalAlgebra.Cylinder.IsGood.cofibration_i
HomotopicalAlgebra.Cylinder.IsVeryGood.toIsGood
HomotopicalAlgebra.Cylinder.IsVeryGood.fibration_ฯ€
HomotopicalAlgebra.Cylinder.weakEquivalence_ฯ€
CategoryTheory.whisker_eq
CategoryTheory.CommSq.fac_left
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.coprod.inl_desc
HomotopicalAlgebra.Precylinder.LeftHomotopy.hโ‚€
CategoryTheory.Limits.coprod.inr_desc
HomotopicalAlgebra.Precylinder.LeftHomotopy.hโ‚
refl ๐Ÿ“–mathematicalโ€”HomotopicalAlgebra.LeftHomotopyRel
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
โ€”HomotopicalAlgebra.Cylinder.instNonempty
trans ๐Ÿ“–โ€”HomotopicalAlgebra.LeftHomotopyRel
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
โ€”โ€”CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
exists_good_cylinder
HomotopicalAlgebra.Cylinder.LeftHomotopy.leftHomotopyRel
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits

HomotopicalAlgebra.Precylinder

Definitions

NameCategoryTheorems
LeftHomotopy ๐Ÿ“–CompDataโ€”

HomotopicalAlgebra.Precylinder.LeftHomotopy

Definitions

NameCategoryTheorems
h ๐Ÿ“–CompOp
9 mathmath: hโ‚€_assoc, HomotopicalAlgebra.Cylinder.LeftHomotopy.covering_homotopy, refl_h, trans_h, symm_h, hโ‚_assoc, hโ‚€, hโ‚, postcomp_h
postcomp ๐Ÿ“–CompOp
1 mathmath: postcomp_h
refl ๐Ÿ“–CompOp
1 mathmath: refl_h
trans ๐Ÿ“–CompOp
1 mathmath: trans_h

Theorems

NameKindAssumesProvesValidatesDepends On
hโ‚€ ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.Precylinder.I
HomotopicalAlgebra.Precylinder.iโ‚€
h
โ€”โ€”
hโ‚€_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.Precylinder.I
HomotopicalAlgebra.Precylinder.iโ‚€
h
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hโ‚€
hโ‚ ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.Precylinder.I
HomotopicalAlgebra.Precylinder.iโ‚
h
โ€”โ€”
hโ‚_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.Precylinder.I
HomotopicalAlgebra.Precylinder.iโ‚
h
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hโ‚
postcomp_h ๐Ÿ“–mathematicalโ€”h
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
postcomp
HomotopicalAlgebra.Precylinder.I
โ€”โ€”
refl_h ๐Ÿ“–mathematicalโ€”h
refl
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.Precylinder.I
HomotopicalAlgebra.Precylinder.ฯ€
โ€”โ€”
symm_h ๐Ÿ“–mathematicalโ€”h
HomotopicalAlgebra.Precylinder.symm
symm
โ€”โ€”
trans_h ๐Ÿ“–mathematicalโ€”h
HomotopicalAlgebra.Precylinder.trans
trans
CategoryTheory.Limits.pushout.desc
HomotopicalAlgebra.Precylinder.I
HomotopicalAlgebra.Precylinder.iโ‚
HomotopicalAlgebra.Precylinder.iโ‚€
โ€”โ€”

---

โ† Back to Index