Documentation

Mathlib.AlgebraicTopology.ModelCategory.LeftHomotopy

Left homotopies in model categories #

We introduce the types Precylinder.LeftHomotopy and Cylinder.LeftHomotopy of homotopies between morphisms X ⟶ Y relative to a (pre)cylinder of X. Given two morphisms f and g, we introduce the relation LeftHomotopyRel f g asserting the existence of a cylinder object P and a left homotopy P.LeftHomotopy f g, and we define the quotient type LeftHomotopyClass X Y. We show that if X is a cofibrant object in a model category, then LeftHomotopyRel is an equivalence relation on X ⟶ Y.

References #

structure HomotopicalAlgebra.Precylinder.LeftHomotopy {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} (P : Precylinder X) {Y : C} (f g : X Y) :

Given a precylinder P for X, two maps f and g in X ⟶ Y are homotopic relative to P when there is a morphism h : P.I ⟶ Y such that P.i₀ ≫ h = f and P.i₁ ≫ h = g.

Instances For

    f : X ⟶ Y is left homotopic to itself relative to any precylinder.

    Equations
      Instances For

        If f and g are homotopic relative to a precylinder P, then g and f are homotopic relative to P.symm

        Equations
          Instances For
            @[simp]
            theorem HomotopicalAlgebra.Precylinder.LeftHomotopy.symm_h {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {P : Precylinder X} {Y : C} {f g : X Y} (h : P.LeftHomotopy f g) :
            h.symm.h = h.h
            noncomputable def HomotopicalAlgebra.Precylinder.LeftHomotopy.trans {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {P : Precylinder X} {Y : C} {f₀ f₁ f₂ : X Y} (h : P.LeftHomotopy f₀ f₁) {P' : Precylinder X} (h' : P'.LeftHomotopy f₁ f₂) [CategoryTheory.Limits.HasPushout P.i₁ P'.i₀] :
            (P.trans P').LeftHomotopy f₀ f₂

            If f₀ is homotopic to f₁ relative to a precylinder P, and f₁ is homotopic to f₂ relative to P', then f₀ is homotopic to f₂ relative to P.trans P'.

            Equations
              Instances For
                @[simp]
                theorem HomotopicalAlgebra.Precylinder.LeftHomotopy.trans_h {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {P : Precylinder X} {Y : C} {f₀ f₁ f₂ : X Y} (h : P.LeftHomotopy f₀ f₁) {P' : Precylinder X} (h' : P'.LeftHomotopy f₁ f₂) [CategoryTheory.Limits.HasPushout P.i₁ P'.i₀] :

                Left homotopies are compatible with postcomposition.

                Equations
                  Instances For
                    @[reducible, inline]

                    Given a cylinder P for X, two maps f and g in X ⟶ Y are homotopic relative to P when there is a morphism h : P.I ⟶ Y such that P.i₀ ≫ h = f and P.i₁ ≫ h = g.

                    Equations
                      Instances For
                        @[reducible, inline]

                        f : X ⟶ Y is left homotopic to itself relative to any cylinder.

                        Equations
                          Instances For
                            @[reducible, inline]

                            If f and g are homotopic relative to a cylinder P, then g and f are homotopic relative to P.symm.

                            Equations
                              Instances For
                                @[reducible, inline]

                                Left homotopies are compatible with postcomposition.

                                Equations
                                  Instances For
                                    @[reducible, inline]
                                    noncomputable abbrev HomotopicalAlgebra.Cylinder.LeftHomotopy.trans {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} [ModelCategory C] {P : Cylinder X} [IsCofibrant X] {f₀ f₁ f₂ : X Y} (h : P.LeftHomotopy f₀ f₁) {P' : Cylinder X} [P'.IsGood] (h' : P'.LeftHomotopy f₁ f₂) [CategoryTheory.Limits.HasPushout P.i₁ P'.i₀] :
                                    (P.trans P').LeftHomotopy f₀ f₂

                                    If f₀ : X ⟶ Y is homotopic to f₁ relative to a cylinder P, and f₁ is homotopic to f₂ relative to a good cylinder P', then f₀ is homotopic to f₂ relative to the cylinder P.trans P' when X is cofibrant.

                                    Equations
                                      Instances For
                                        theorem HomotopicalAlgebra.Cylinder.LeftHomotopy.covering_homotopy {C : Type u} [CategoryTheory.Category.{v, u} C] [ModelCategory C] {A E B : C} {P : Cylinder A} {f₀ f₁ : A B} [IsCofibrant A] [P.IsGood] (h : P.LeftHomotopy f₀ f₁) (p : E B) [Fibration p] (l₀ : A E) (hl₀ : CategoryTheory.CategoryStruct.comp l₀ p = f₀ := by cat_disch) :
                                        ∃ (l₁ : A E) (h' : P.LeftHomotopy l₀ l₁), CategoryTheory.CategoryStruct.comp h'.h p = h.h

                                        The covering homotopy theorem: if p : E ⟶ B is a fibration, l₀ : A ⟶ E is a morphism, if there is a left homotopy h between the composition f₀ := l₀ ≫ p and a morphism f₁ : A ⟶ B, then there exists a morphism l₁ : A ⟶ E and a left homotopy h' from l₀ to l₁ which is compatible with h (in particular, l₁ ≫ p = f₁).

                                        The left homotopy relation on morphisms in a category with weak equivalences.

                                        Equations
                                          Instances For
                                            theorem HomotopicalAlgebra.LeftHomotopyRel.trans {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} [ModelCategory C] {f₀ f₁ f₂ : X Y} [IsCofibrant X] (h : LeftHomotopyRel f₀ f₁) (h' : LeftHomotopyRel f₁ f₂) :
                                            LeftHomotopyRel f₀ f₂

                                            In a category with weak equivalences, this is the quotient of the type of morphisms X ⟶ Y by the equivalence relation generated by left homotopies.

                                            Equations
                                              Instances For

                                                Given f : X ⟶ Y, this is the class of f in the quotient LeftHomotopyClass X Y.

                                                Equations
                                                  Instances For

                                                    The postcomposition map LeftHomotopyClass X Y → (Y ⟶ Z) → LeftHomotopyClass X Z.

                                                    Equations
                                                      Instances For