Documentation Verification Report

Basic

📁 Source: Mathlib/AlgebraicTopology/SimplexCategory/Augmented/Basic.lean

Statistics

MetricCount
DefinitionsAugmentedSimplexCategory, equivAugmentedCosimplicialObjecFunctorCompPointIso, equivAugmentedCosimplicialObject, equivAugmentedCosimplicialObjectFunctorCompDropIso, equivAugmentedCosimplicialObjectFunctorCompPointIso, equivAugmentedCosimplicialObjectFunctorCompToArrowIso, equivAugmentedSimplicialObject, equivAugmentedSimplicialObjectFunctorCompDropIso, equivAugmentedSimplicialObjectFunctorCompPointIso, equivAugmentedSimplicialObjectFunctorCompToArrowIso, inclusion
11
TheoremsequivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, equivAugmentedCosimplicialObjectFunctorCompPointIso_hom_app, equivAugmentedCosimplicialObjectFunctorCompPointIso_inv_app, equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, equivAugmentedCosimplicialObject_counitIso_hom_app_left, equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, equivAugmentedCosimplicialObject_counitIso_inv_app_left, equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, equivAugmentedCosimplicialObject_functor_map_left, equivAugmentedCosimplicialObject_functor_map_right_app, equivAugmentedCosimplicialObject_functor_obj_hom_app, equivAugmentedCosimplicialObject_functor_obj_left, equivAugmentedCosimplicialObject_functor_obj_right_map, equivAugmentedCosimplicialObject_functor_obj_right_obj, equivAugmentedCosimplicialObject_inverse_map_app, equivAugmentedCosimplicialObject_inverse_obj_map, equivAugmentedCosimplicialObject_inverse_obj_obj, equivAugmentedCosimplicialObject_unitIso_hom_app_app, equivAugmentedCosimplicialObject_unitIso_inv_app_app, equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app, equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app, equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, equivAugmentedSimplicialObject_counitIso_hom_app_left_app, equivAugmentedSimplicialObject_counitIso_hom_app_right, equivAugmentedSimplicialObject_counitIso_inv_app_left_app, equivAugmentedSimplicialObject_counitIso_inv_app_right, equivAugmentedSimplicialObject_functor_map_left_app, equivAugmentedSimplicialObject_functor_map_right, equivAugmentedSimplicialObject_functor_obj_hom_app, equivAugmentedSimplicialObject_functor_obj_left_map, equivAugmentedSimplicialObject_functor_obj_left_obj, equivAugmentedSimplicialObject_functor_obj_right, equivAugmentedSimplicialObject_inverse_map_app, equivAugmentedSimplicialObject_inverse_obj_map, equivAugmentedSimplicialObject_inverse_obj_obj, equivAugmentedSimplicialObject_unitIso_hom_app_app, equivAugmentedSimplicialObject_unitIso_inv_app_app, inclusion_map, inclusion_obj, instFaithfulSimplexCategoryInclusion, instFullSimplexCategoryInclusion, instHasInitial
51
Total62

AugmentedSimplexCategory

Definitions

NameCategoryTheorems
equivAugmentedCosimplicialObjecFunctorCompPointIso 📖CompOp
equivAugmentedCosimplicialObject 📖CompOp
23 mathmath: equivAugmentedCosimplicialObject_counitIso_hom_app_left, equivAugmentedCosimplicialObject_inverse_map_app, equivAugmentedCosimplicialObject_functor_obj_left, equivAugmentedCosimplicialObjectFunctorCompPointIso_hom_app, equivAugmentedCosimplicialObject_inverse_obj_map, equivAugmentedCosimplicialObject_inverse_obj_obj, equivAugmentedCosimplicialObject_functor_map_left, equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, equivAugmentedCosimplicialObjectFunctorCompPointIso_inv_app, equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, equivAugmentedCosimplicialObject_unitIso_inv_app_app, equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, equivAugmentedCosimplicialObject_functor_obj_right_map, equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, equivAugmentedCosimplicialObject_functor_map_right_app, equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, equivAugmentedCosimplicialObject_functor_obj_hom_app, equivAugmentedCosimplicialObject_functor_obj_right_obj, equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, equivAugmentedCosimplicialObject_counitIso_inv_app_left, equivAugmentedCosimplicialObject_unitIso_hom_app_app
equivAugmentedCosimplicialObjectFunctorCompDropIso 📖CompOp
2 mathmath: equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app
equivAugmentedCosimplicialObjectFunctorCompPointIso 📖CompOp
2 mathmath: equivAugmentedCosimplicialObjectFunctorCompPointIso_hom_app, equivAugmentedCosimplicialObjectFunctorCompPointIso_inv_app
equivAugmentedCosimplicialObjectFunctorCompToArrowIso 📖CompOp
4 mathmath: equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right
equivAugmentedSimplicialObject 📖CompOp
23 mathmath: equivAugmentedSimplicialObject_inverse_map_app, equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app, equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app, equivAugmentedSimplicialObject_inverse_obj_obj, equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, equivAugmentedSimplicialObject_counitIso_inv_app_left_app, equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, equivAugmentedSimplicialObject_functor_map_right, equivAugmentedSimplicialObject_functor_map_left_app, equivAugmentedSimplicialObject_counitIso_hom_app_right, equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, equivAugmentedSimplicialObject_counitIso_hom_app_left_app, equivAugmentedSimplicialObject_functor_obj_hom_app, equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, equivAugmentedSimplicialObject_unitIso_hom_app_app, equivAugmentedSimplicialObject_counitIso_inv_app_right, equivAugmentedSimplicialObject_unitIso_inv_app_app, equivAugmentedSimplicialObject_functor_obj_right, equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, equivAugmentedSimplicialObject_functor_obj_left_map, equivAugmentedSimplicialObject_inverse_obj_map, equivAugmentedSimplicialObject_functor_obj_left_obj
equivAugmentedSimplicialObjectFunctorCompDropIso 📖CompOp
2 mathmath: equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app
equivAugmentedSimplicialObjectFunctorCompPointIso 📖CompOp
2 mathmath: equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app, equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app
equivAugmentedSimplicialObjectFunctorCompToArrowIso 📖CompOp
4 mathmath: equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right
inclusion 📖CompOp
8 mathmath: inclusion_obj, instFullSimplexCategoryInclusion, equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, instFaithfulSimplexCategoryInclusion, inclusion_map, equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app

Theorems

NameKindAssumesProvesValidatesDepends On
equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
CategoryTheory.Functor.category
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.Functor.comp
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedCosimplicialObject
CategoryTheory.CosimplicialObject.Augmented.drop
CategoryTheory.Iso.hom
CategoryTheory.Functor.whiskeringLeft
inclusion
equivAugmentedCosimplicialObjectFunctorCompDropIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial
CategoryTheory.WithInitial.incl
equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
CategoryTheory.Functor.category
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.Functor.comp
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedCosimplicialObject
CategoryTheory.CosimplicialObject.Augmented.drop
CategoryTheory.Iso.inv
CategoryTheory.Functor.whiskeringLeft
inclusion
equivAugmentedCosimplicialObjectFunctorCompDropIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial
CategoryTheory.WithInitial.incl
equivAugmentedCosimplicialObjectFunctorCompPointIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedCosimplicialObject
CategoryTheory.CosimplicialObject.Augmented.point
CategoryTheory.Iso.hom
CategoryTheory.Functor.obj
CategoryTheory.evaluation
CategoryTheory.WithInitial.star
equivAugmentedCosimplicialObjectFunctorCompPointIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial
equivAugmentedCosimplicialObjectFunctorCompPointIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedCosimplicialObject
CategoryTheory.CosimplicialObject.Augmented.point
CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
CategoryTheory.evaluation
CategoryTheory.WithInitial.star
equivAugmentedCosimplicialObjectFunctorCompPointIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial
equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Functor
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.comp
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedCosimplicialObject
CategoryTheory.CosimplicialObject.Augmented.toArrow
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor.mapArrowFunctor
CategoryTheory.evaluation
CategoryTheory.WithInitial.star
CategoryTheory.WithInitial
CategoryTheory.WithInitial.incl
CategoryTheory.WithInitial.homTo
equivAugmentedCosimplicialObjectFunctorCompToArrowIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Functor
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.comp
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedCosimplicialObject
CategoryTheory.CosimplicialObject.Augmented.toArrow
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor.mapArrowFunctor
CategoryTheory.evaluation
CategoryTheory.WithInitial.star
CategoryTheory.WithInitial
CategoryTheory.WithInitial.incl
CategoryTheory.WithInitial.homTo
equivAugmentedCosimplicialObjectFunctorCompToArrowIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Functor
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.comp
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedCosimplicialObject
CategoryTheory.CosimplicialObject.Augmented.toArrow
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor.mapArrowFunctor
CategoryTheory.evaluation
CategoryTheory.WithInitial.star
CategoryTheory.WithInitial
CategoryTheory.WithInitial.incl
CategoryTheory.WithInitial.homTo
equivAugmentedCosimplicialObjectFunctorCompToArrowIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Functor
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.comp
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedCosimplicialObject
CategoryTheory.CosimplicialObject.Augmented.toArrow
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor.mapArrowFunctor
CategoryTheory.evaluation
CategoryTheory.WithInitial.star
CategoryTheory.WithInitial
CategoryTheory.WithInitial.incl
CategoryTheory.WithInitial.homTo
equivAugmentedCosimplicialObjectFunctorCompToArrowIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
equivAugmentedCosimplicialObject_counitIso_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.WithInitial.ofCommaObject
CategoryTheory.WithInitial.ofCommaMorphism
CategoryTheory.WithInitial.mkCommaObject
CategoryTheory.WithInitial.mkCommaMorphism
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
equivAugmentedCosimplicialObject_counitIso_hom_app_right_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.WithInitial.ofCommaObject
CategoryTheory.WithInitial.ofCommaMorphism
CategoryTheory.WithInitial.mkCommaObject
CategoryTheory.WithInitial.mkCommaMorphism
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial.incl
CategoryTheory.Comma.left
equivAugmentedCosimplicialObject_counitIso_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.WithInitial.ofCommaObject
CategoryTheory.WithInitial.ofCommaMorphism
CategoryTheory.WithInitial.mkCommaObject
CategoryTheory.WithInitial.mkCommaMorphism
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
equivAugmentedCosimplicialObject_counitIso_inv_app_right_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.WithInitial.ofCommaObject
CategoryTheory.WithInitial.ofCommaMorphism
CategoryTheory.WithInitial.mkCommaObject
CategoryTheory.WithInitial.mkCommaMorphism
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial.incl
CategoryTheory.Comma.left
equivAugmentedCosimplicialObject_functor_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.WithInitial.mkCommaObject
CategoryTheory.Functor.map
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.NatTrans.app
CategoryTheory.WithInitial.star
equivAugmentedCosimplicialObject_functor_map_right_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.WithInitial.incl
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.WithInitial.mkCommaObject
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.Functor.obj
equivAugmentedCosimplicialObject_functor_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.WithInitial.star
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.WithInitial.incl
CategoryTheory.Comma.hom
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.Functor.map
CategoryTheory.Limits.IsInitial.to
CategoryTheory.WithInitial.starInitial
CategoryTheory.WithInitial.of
equivAugmentedCosimplicialObject_functor_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Functor
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.WithInitial.star
equivAugmentedCosimplicialObject_functor_obj_right_map 📖mathematicalCategoryTheory.Functor.map
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.WithInitial.incl
equivAugmentedCosimplicialObject_functor_obj_right_obj 📖mathematicalCategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.WithInitial.incl
equivAugmentedCosimplicialObject_inverse_map_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.WithInitial.ofCommaObject
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.left
CategoryTheory.CommaMorphism.right
CategoryTheory.CommaMorphism.left
equivAugmentedCosimplicialObject_inverse_obj_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Comma.left
CategoryTheory.WithInitial.down
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.id
equivAugmentedCosimplicialObject_inverse_obj_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.Comma
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.Comma.right
CategoryTheory.Comma.left
equivAugmentedCosimplicialObject_unitIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.Functor.const
CategoryTheory.commaCategory
CategoryTheory.WithInitial.mkCommaObject
CategoryTheory.WithInitial.mkCommaMorphism
CategoryTheory.WithInitial.ofCommaObject
CategoryTheory.WithInitial.ofCommaMorphism
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.WithInitial.incl
CategoryTheory.WithInitial.star
CategoryTheory.Iso
CategoryTheory.Iso.app
CategoryTheory.Iso.refl
equivAugmentedCosimplicialObject_unitIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.commaCategory
CategoryTheory.WithInitial.mkCommaObject
CategoryTheory.WithInitial.mkCommaMorphism
CategoryTheory.WithInitial.ofCommaObject
CategoryTheory.WithInitial.ofCommaMorphism
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.unitIso
AugmentedSimplexCategory
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
equivAugmentedCosimplicialObject
CategoryTheory.WithInitial.incl
CategoryTheory.WithInitial.star
CategoryTheory.Iso
CategoryTheory.Iso.app
CategoryTheory.Iso.refl
equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedSimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
CategoryTheory.Iso.hom
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
inclusion
equivAugmentedSimplicialObjectFunctorCompDropIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.WithTerminal.incl
Opposite.op
CategoryTheory.WithInitial.of
Opposite.unop
CategoryTheory.WithInitial.star
equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedSimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
CategoryTheory.Iso.inv
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
inclusion
equivAugmentedSimplicialObjectFunctorCompDropIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.WithTerminal.incl
Opposite.op
CategoryTheory.WithInitial.of
Opposite.unop
CategoryTheory.WithInitial.star
equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
Opposite
AugmentedSimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedSimplicialObject
CategoryTheory.SimplicialObject.Augmented.point
CategoryTheory.Iso.hom
CategoryTheory.Functor.obj
CategoryTheory.evaluation
Opposite.op
CategoryTheory.WithInitial.star
equivAugmentedSimplicialObjectFunctorCompPointIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial
equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
Opposite
AugmentedSimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedSimplicialObject
CategoryTheory.SimplicialObject.Augmented.point
CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
CategoryTheory.evaluation
Opposite.op
CategoryTheory.WithInitial.star
equivAugmentedSimplicialObjectFunctorCompPointIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial
equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
AugmentedSimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedSimplicialObject
CategoryTheory.SimplicialObject.Augmented.toArrow
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor.mapArrowFunctor
CategoryTheory.evaluation
Opposite.op
CategoryTheory.WithInitial
CategoryTheory.WithInitial.incl
CategoryTheory.WithInitial.star
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial.homTo
equivAugmentedSimplicialObjectFunctorCompToArrowIso
CategoryTheory.CategoryStruct.id
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.WithTerminal.incl
CategoryTheory.WithInitial.of
Opposite.unop
equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
AugmentedSimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedSimplicialObject
CategoryTheory.SimplicialObject.Augmented.toArrow
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor.mapArrowFunctor
CategoryTheory.evaluation
Opposite.op
CategoryTheory.WithInitial
CategoryTheory.WithInitial.incl
CategoryTheory.WithInitial.star
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial.homTo
equivAugmentedSimplicialObjectFunctorCompToArrowIso
CategoryTheory.CategoryStruct.id
equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
AugmentedSimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedSimplicialObject
CategoryTheory.SimplicialObject.Augmented.toArrow
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor.mapArrowFunctor
CategoryTheory.evaluation
Opposite.op
CategoryTheory.WithInitial
CategoryTheory.WithInitial.incl
CategoryTheory.WithInitial.star
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial.homTo
equivAugmentedSimplicialObjectFunctorCompToArrowIso
CategoryTheory.CategoryStruct.id
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.WithTerminal.incl
CategoryTheory.WithInitial.of
Opposite.unop
equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
AugmentedSimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
equivAugmentedSimplicialObject
CategoryTheory.SimplicialObject.Augmented.toArrow
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor.mapArrowFunctor
CategoryTheory.evaluation
Opposite.op
CategoryTheory.WithInitial
CategoryTheory.WithInitial.incl
CategoryTheory.WithInitial.star
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial.homTo
equivAugmentedSimplicialObjectFunctorCompToArrowIso
CategoryTheory.CategoryStruct.id
equivAugmentedSimplicialObject_counitIso_hom_app_left_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Functor.comp
CategoryTheory.Functor
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Functor.category
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.WithTerminal.equivComma
CategoryTheory.Equivalence.congrLeft
CategoryTheory.WithInitial.opEquiv
CategoryTheory.Equivalence.functor
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
AugmentedSimplexCategory
equivAugmentedSimplicialObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.const
CategoryTheory.Comma.right
Opposite.unop
CategoryTheory.WithTerminal.incl
Opposite.op
CategoryTheory.WithInitial.of
CategoryTheory.WithInitial.star
CategoryTheory.WithTerminal.of
CategoryTheory.WithTerminal.star
CategoryTheory.Iso
CategoryTheory.Iso.refl
CategoryTheory.Functor.map
CategoryTheory.WithTerminal.down
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Equivalence.invFunIdAssoc_hom_app
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
equivAugmentedSimplicialObject_counitIso_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Functor.comp
CategoryTheory.Functor
Opposite
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.WithTerminal.equivComma
CategoryTheory.Equivalence.congrLeft
CategoryTheory.WithInitial.opEquiv
CategoryTheory.Equivalence.functor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
AugmentedSimplexCategory
equivAugmentedSimplicialObject
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.const
CategoryTheory.Equivalence.invFunIdAssoc_hom_app
CategoryTheory.Category.comp_id
equivAugmentedSimplicialObject_counitIso_inv_app_left_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Functor.comp
CategoryTheory.Functor
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Functor.category
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.WithTerminal.equivComma
CategoryTheory.Equivalence.congrLeft
CategoryTheory.WithInitial.opEquiv
CategoryTheory.Equivalence.functor
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
AugmentedSimplexCategory
equivAugmentedSimplicialObject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithTerminal.incl
CategoryTheory.Functor.const
CategoryTheory.Comma.right
Opposite.unop
Opposite.op
CategoryTheory.WithInitial.of
CategoryTheory.WithInitial.star
CategoryTheory.WithTerminal.of
CategoryTheory.WithTerminal.star
CategoryTheory.CategoryStruct.id
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso
CategoryTheory.Iso.refl
CategoryTheory.Functor.map
CategoryTheory.WithTerminal.down
CategoryTheory.Comma.hom
CategoryTheory.Equivalence.invFunIdAssoc_inv_app
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
equivAugmentedSimplicialObject_counitIso_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Functor.comp
CategoryTheory.Functor
Opposite
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.WithTerminal.equivComma
CategoryTheory.Equivalence.congrLeft
CategoryTheory.WithInitial.opEquiv
CategoryTheory.Equivalence.functor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
AugmentedSimplexCategory
equivAugmentedSimplicialObject
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.const
CategoryTheory.Equivalence.invFunIdAssoc_inv_app
CategoryTheory.Category.comp_id
equivAugmentedSimplicialObject_functor_map_left_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.WithTerminal.incl
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Functor.category
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.congrLeft
CategoryTheory.WithInitial.opEquiv
CategoryTheory.CommaMorphism.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.WithTerminal.equivComma
CategoryTheory.Functor.map
AugmentedSimplexCategory
equivAugmentedSimplicialObject
Opposite.op
CategoryTheory.WithInitial.of
Opposite.unop
CategoryTheory.WithInitial.star
equivAugmentedSimplicialObject_functor_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.WithTerminal
Opposite
SimplexCategory
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
CategoryTheory.WithTerminal.equivComma
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Equivalence.congrLeft
CategoryTheory.WithInitial.opEquiv
CategoryTheory.Functor.map
AugmentedSimplexCategory
equivAugmentedSimplicialObject
CategoryTheory.NatTrans.app
Opposite.op
CategoryTheory.WithInitial.star
equivAugmentedSimplicialObject_functor_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.WithTerminal.incl
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.congrLeft
CategoryTheory.WithInitial.opEquiv
CategoryTheory.Functor.const
CategoryTheory.WithTerminal.star
CategoryTheory.Comma.hom
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.const
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
AugmentedSimplexCategory
equivAugmentedSimplicialObject
CategoryTheory.Functor.map
Opposite.op
CategoryTheory.WithInitial.of
Opposite.unop
CategoryTheory.WithInitial.star
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.WithTerminal.starTerminal
CategoryTheory.WithTerminal.of
CategoryTheory.WithInitial.down
CategoryTheory.Limits.IsInitial.to
CategoryTheory.WithInitial.starInitial
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
equivAugmentedSimplicialObject_functor_obj_left_map 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
AugmentedSimplexCategory
equivAugmentedSimplicialObject
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.WithTerminal.incl
Opposite.op
CategoryTheory.WithInitial.of
Opposite.unop
CategoryTheory.WithInitial.star
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial.down
CategoryTheory.Limits.IsInitial.to
CategoryTheory.WithInitial.starInitial
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
equivAugmentedSimplicialObject_functor_obj_left_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
AugmentedSimplexCategory
equivAugmentedSimplicialObject
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.WithTerminal.incl
Opposite.op
CategoryTheory.WithInitial.of
Opposite.unop
CategoryTheory.WithInitial.star
equivAugmentedSimplicialObject_functor_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Equivalence.functor
AugmentedSimplexCategory
equivAugmentedSimplicialObject
Opposite.op
CategoryTheory.WithInitial.star
equivAugmentedSimplicialObject_inverse_map_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Functor.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.congrLeft
CategoryTheory.WithInitial.opEquiv
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.WithTerminal.equivComma
CategoryTheory.Functor.map
AugmentedSimplexCategory
equivAugmentedSimplicialObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Comma.right
Opposite.unop
CategoryTheory.WithTerminal.of
Opposite.op
CategoryTheory.WithTerminal.star
CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
equivAugmentedSimplicialObject_inverse_obj_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.inverse
AugmentedSimplexCategory
equivAugmentedSimplicialObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Comma.right
CategoryTheory.WithTerminal
Opposite.unop
CategoryTheory.WithTerminal.of
Opposite.op
CategoryTheory.WithTerminal.star
CategoryTheory.WithTerminal.instCategory
Quiver.Hom.op
CategoryTheory.WithTerminal.down
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.WithTerminal.starTerminal
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
equivAugmentedSimplicialObject_inverse_obj_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.inverse
AugmentedSimplexCategory
equivAugmentedSimplicialObject
CategoryTheory.WithTerminal
Opposite.unop
CategoryTheory.WithTerminal.of
Opposite.op
CategoryTheory.WithTerminal.star
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Comma.right
equivAugmentedSimplicialObject_unitIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.congrLeft
CategoryTheory.WithInitial.opEquiv
CategoryTheory.WithTerminal.equivComma
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
AugmentedSimplexCategory
equivAugmentedSimplicialObject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.WithTerminal.of
Opposite.op
CategoryTheory.WithTerminal.star
CategoryTheory.WithInitial.of
CategoryTheory.WithInitial.star
CategoryTheory.WithTerminal.incl
CategoryTheory.Functor.map
CategoryTheory.Iso
CategoryTheory.Iso.refl
CategoryTheory.Iso.app
CategoryTheory.Equivalence.funInvIdAssoc_inv_app
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
equivAugmentedSimplicialObject_unitIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.WithInitial
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial.instCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.congrLeft
CategoryTheory.WithInitial.opEquiv
CategoryTheory.WithTerminal.equivComma
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.unitIso
AugmentedSimplexCategory
equivAugmentedSimplicialObject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.WithTerminal.of
Opposite.op
CategoryTheory.WithTerminal.star
CategoryTheory.WithTerminal.incl
CategoryTheory.WithInitial.of
CategoryTheory.WithInitial.star
CategoryTheory.Iso
CategoryTheory.Iso.app
CategoryTheory.Iso.refl
CategoryTheory.Functor.map
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Equivalence.funInvIdAssoc_hom_app
inclusion_map 📖mathematicalCategoryTheory.Functor.map
SimplexCategory
SimplexCategory.smallCategory
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
inclusion
inclusion_obj 📖mathematicalCategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
inclusion
CategoryTheory.WithInitial.of
instFaithfulSimplexCategoryInclusion 📖mathematicalCategoryTheory.Functor.Faithful
SimplexCategory
SimplexCategory.smallCategory
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
inclusion
CategoryTheory.WithInitial.instFaithfulIncl
instFullSimplexCategoryInclusion 📖mathematicalCategoryTheory.Functor.Full
SimplexCategory
SimplexCategory.smallCategory
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
inclusion
CategoryTheory.WithInitial.instFullIncl
instHasInitial 📖mathematicalCategoryTheory.Limits.HasInitial
AugmentedSimplexCategory
CategoryTheory.WithInitial.instCategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.WithInitial.instHasInitial

(root)

Definitions

NameCategoryTheorems
AugmentedSimplexCategory 📖CompOp
67 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, AugmentedSimplexCategory.inr_comp_associator, AugmentedSimplexCategory.inclusion_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, AugmentedSimplexCategory.whiskerLeft_id_star, AugmentedSimplexCategory.inr_comp_inl_comp_associator, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_left, AugmentedSimplexCategory.inr_comp_inl_comp_associator_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, AugmentedSimplexCategory.instHasInitial, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, AugmentedSimplexCategory.inl_comp_inl_comp_associator_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, AugmentedSimplexCategory.tensorObj_hom_ext_iff, AugmentedSimplexCategory.inr_comp_associator_assoc, AugmentedSimplexCategory.instFullSimplexCategoryInclusion, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, AugmentedSimplexCategory.inl_comp_tensorHom, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.inl_comp_inl_comp_associator, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, AugmentedSimplexCategory.instFaithfulSimplexCategoryInclusion, AugmentedSimplexCategory.tensor_id, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, AugmentedSimplexCategory.inclusion_map, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, AugmentedSimplexCategory.tensorHom_id, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, AugmentedSimplexCategory.id_tensorHom, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, AugmentedSimplexCategory.inr_comp_tensorHom, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, AugmentedSimplexCategory.inl_comp_tensorHom_assoc, AugmentedSimplexCategory.inr_comp_tensorHom_assoc, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, AugmentedSimplexCategory.tensorHom_comp_tensorHom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app

---

← Back to Index