Documentation

Mathlib.AlgebraicTopology.SimplexCategory.Augmented.Basic

The Augmented simplex category #

This file defines the AugmentedSimplexCategory as the category obtained by adding an initial object to SimplexCategory (using CategoryTheory.WithInitial).

This definition provides a canonical full and faithful inclusion functor inclusion : SimplexCategoryAugmentedSimplexCategory.

We prove that functors out of AugmentedSimplexCategory are equivalent to augmented cosimplicial objects and that functors out of AugmentedSimplexCategoryᵒᵖ are equivalent to augmented simplicial objects, and we provide a translation of the main constrcutions on augmented (co)simplicial objects (i.e drop, point and toArrow) in terms of these equivalences.

@[reducible, inline]

The AugmentedSimplexCategory is the category obtained from SimplexCategory by adjoining an initial object.

Equations
    Instances For

      Through the equivalence (AugmentedSimplexCategory ⥤ C) ≌ CosimplicialObject.Augmented C, taking the point of the augmentation corresponds to evaluation at the initial object.

      Equations
        Instances For
          @[deprecated AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso (since := "2025-08-22")]

          Alias of AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso.


          Through the equivalence (AugmentedSimplexCategory ⥤ C) ≌ CosimplicialObject.Augmented C, taking the point of the augmentation corresponds to evaluation at the initial object.

          Equations
            Instances For
              @[simp]
              theorem AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app {C : Type u_1} [CategoryTheory.Category.{v_1, u_1} C] (X : CategoryTheory.SimplicialObject.Augmented C) (X✝ : SimplexCategoryᵒᵖ) :
              @[simp]
              theorem AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map {C : Type u_1} [CategoryTheory.Category.{v_1, u_1} C] (X : CategoryTheory.SimplicialObject.Augmented C) {X✝ Y✝ : (CategoryTheory.WithInitial SimplexCategory)ᵒᵖ} (f : X✝ Y✝) :

              Through the equivalence (AugmentedSimplexCategoryᵒᵖ ⥤ C) ≌ SimplicialObject.Augmented C, dropping the augmentation corresponds to precomposition with inclusionᵒᵖ : SimplexCategoryᵒᵖ ⥤ AugmentedSimplexCategoryᵒᵖ.

              Equations
                Instances For

                  Through the equivalence (AugmentedSimplexCategory ⥤ C) ≌ CosimplicialObject.Augmented C, taking the point of the augmentation corresponds to evaluation at the initial object.

                  Equations
                    Instances For