Documentation Verification Report

PairingCore

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/AnodyneExtensions/PairingCore.lean

Statistics

MetricCount
DefinitionspairingCore, PairingCore, AncestralRel, I, IsInner, IsProper, IsRegular, dim, equivI, equivII, index, pairing, simplex, type₁, type₂, ι
16
Theoremsne_last, ne_zero, isUniquelyCodimOneFace, toIsProper, wf, ancestralRel_iff, equivII_apply_coe, equivI_apply_coe, injective_type₁, injective_type₁', injective_type₂, injective_type₂', instIsInnerPairingOfIsInner, instIsProperPairingOfIsProper, instIsRegularPairingOfIsRegular, isUniquelyCodimOneFace, isUniquelyCodimOneFace_index, isUniquelyCodimOneFace_index_coe, nonDegenerate₁, nonDegenerate₂, notMem₁, notMem₂, pairing_I, pairing_II, pairing_p_equivII, pairing_p_symm_equivI, surjective, surjective', type₁_dim, type₁_ne_type₂, type₁_ne_type₂', type₁_simplex, type₂_dim, type₂_simplex
34
Total50

SSet.Subcomplex

Definitions

NameCategoryTheorems
PairingCore 📖CompData

SSet.Subcomplex.Pairing

Definitions

NameCategoryTheorems
pairingCore 📖CompOp

SSet.Subcomplex.PairingCore

Definitions

NameCategoryTheorems
AncestralRel 📖MathDef
2 mathmath: IsRegular.wf, ancestralRel_iff
I 📖CompOp
4 mathmath: pairing_p_equivII, pairing_I, equivI_apply_coe, pairing_p_symm_equivI
IsInner 📖CompData
IsProper 📖CompData
1 mathmath: IsRegular.toIsProper
IsRegular 📖CompData
dim 📖CompOp
8 mathmath: surjective', type₂_dim, type₂_simplex, nonDegenerate₂, type₁_dim, notMem₁, notMem₂, nonDegenerate₁
equivI 📖CompOp
3 mathmath: pairing_p_equivII, equivI_apply_coe, pairing_p_symm_equivI
equivII 📖CompOp
4 mathmath: pairing_p_equivII, ancestralRel_iff, equivII_apply_coe, pairing_p_symm_equivI
index 📖CompOp
6 mathmath: isUniquelyCodimOneFace_index, surjective', isUniquelyCodimOneFace_index_coe, type₂_simplex, nonDegenerate₂, notMem₂
pairing 📖CompOp
8 mathmath: instIsInnerPairingOfIsInner, instIsRegularPairingOfIsRegular, pairing_p_equivII, pairing_I, ancestralRel_iff, pairing_II, instIsProperPairingOfIsProper, pairing_p_symm_equivI
simplex 📖CompOp
7 mathmath: surjective', type₂_simplex, nonDegenerate₂, notMem₁, type₁_simplex, notMem₂, nonDegenerate₁
type₁ 📖CompOp
9 mathmath: isUniquelyCodimOneFace, isUniquelyCodimOneFace_index, isUniquelyCodimOneFace_index_coe, equivI_apply_coe, IsProper.isUniquelyCodimOneFace, type₁_dim, injective_type₁, surjective, type₁_simplex
type₂ 📖CompOp
9 mathmath: isUniquelyCodimOneFace, injective_type₂, isUniquelyCodimOneFace_index, isUniquelyCodimOneFace_index_coe, type₂_dim, type₂_simplex, IsProper.isUniquelyCodimOneFace, surjective, equivII_apply_coe
ι 📖CompOp
8 mathmath: injective_type₂, IsRegular.wf, pairing_p_equivII, equivI_apply_coe, injective_type₁, ancestralRel_iff, equivII_apply_coe, pairing_p_symm_equivI

Theorems

NameKindAssumesProvesValidatesDepends On
ancestralRel_iff 📖mathematicalAncestralRel
SSet.Subcomplex.Pairing.AncestralRel
pairing
DFunLike.coe
Equiv
ι
Set.Elem
SSet.Subcomplex.N
II
EquivLike.toFunLike
Equiv.instEquivLike
equivII
EquivLike.toEmbeddingLike
pairing_p_equivII
equivII_apply_coe 📖mathematicalSSet.Subcomplex.N
Set
Set.instMembership
Set.range
ι
type₂
DFunLike.coe
Equiv
Set.Elem
II
EquivLike.toFunLike
Equiv.instEquivLike
equivII
equivI_apply_coe 📖mathematicalSSet.Subcomplex.N
Set
Set.instMembership
Set.range
ι
type₁
DFunLike.coe
Equiv
Set.Elem
I
EquivLike.toFunLike
Equiv.instEquivLike
equivI
injective_type₁ 📖mathematicalι
SSet.Subcomplex.N
type₁
injective_type₁'
SSet.N.ext_iff
SSet.Subcomplex.N.ext_iff
injective_type₁' 📖dim
simplex
injective_type₂ 📖mathematicalι
SSet.Subcomplex.N
type₂
injective_type₂'
SSet.N.ext_iff
SSet.Subcomplex.N.ext_iff
injective_type₂' 📖dim
CategoryTheory.SimplicialObject.δ
CategoryTheory.types
index
simplex
instIsInnerPairingOfIsInner 📖mathematicalSSet.Subcomplex.Pairing.IsInner
pairing
instIsProperPairingOfIsProper
instIsProperPairingOfIsProper
SSet.Subcomplex.Pairing.isUniquelyCodimOneFace
Equiv.surjective
pairing_p_equivII
SSet.S.IsUniquelyCodimOneFace.index.congr_simp
isUniquelyCodimOneFace_index
IsInner.ne_zero
IsInner.ne_last
instIsProperPairingOfIsProper 📖mathematicalSSet.Subcomplex.Pairing.IsProper
pairing
Equiv.surjective
pairing_p_equivII
isUniquelyCodimOneFace
instIsRegularPairingOfIsRegular 📖mathematicalSSet.Subcomplex.Pairing.IsRegular
pairing
instIsProperPairingOfIsProper
IsRegular.toIsProper
IsRegular.wf
wellFounded_iff_isEmpty_descending_chain
IsEmpty.false
Equiv.apply_symm_apply
isUniquelyCodimOneFace 📖mathematicalSSet.S.IsUniquelyCodimOneFace
SSet.N.toS
SSet.Subcomplex.N.toN
type₂
type₁
IsProper.isUniquelyCodimOneFace
isUniquelyCodimOneFace_index 📖mathematicalSSet.S.IsUniquelyCodimOneFace.index
SSet.N.toS
SSet.Subcomplex.N.toN
type₂
type₁
isUniquelyCodimOneFace
SSet.S.dim
index
isUniquelyCodimOneFace
SSet.S.IsUniquelyCodimOneFace.δ_eq_iff
isUniquelyCodimOneFace_index_coe 📖mathematicaldimSSet.S.IsUniquelyCodimOneFace.index
SSet.N.toS
SSet.Subcomplex.N.toN
type₂
type₁
isUniquelyCodimOneFace
index
isUniquelyCodimOneFace
isUniquelyCodimOneFace_index
nonDegenerate₁ 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
dim
Set
Set.instMembership
SSet.nonDegenerate
simplex
nonDegenerate₂ 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
dim
Set
Set.instMembership
SSet.nonDegenerate
CategoryTheory.SimplicialObject.δ
index
simplex
notMem₁ 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
dim
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
simplex
notMem₂ 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
dim
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.SimplicialObject.δ
index
simplex
pairing_I 📖mathematicalSSet.Subcomplex.Pairing.I
pairing
I
pairing_II 📖mathematicalSSet.Subcomplex.Pairing.II
pairing
II
pairing_p_equivII 📖mathematicalDFunLike.coe
Equiv
Set.Elem
SSet.Subcomplex.N
II
I
EquivLike.toFunLike
Equiv.instEquivLike
SSet.Subcomplex.Pairing.p
pairing
ι
equivII
equivI
Equiv.symm_apply_apply
pairing_p_symm_equivI 📖mathematicalDFunLike.coe
Equiv
Set.Elem
SSet.Subcomplex.N
I
II
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
SSet.Subcomplex.Pairing.II
pairing
SSet.Subcomplex.Pairing.I
SSet.Subcomplex.Pairing.p
ι
equivI
equivII
Equiv.symm_apply_apply
surjective 📖mathematicaltype₁
type₂
surjective'
SSet.Subcomplex.N.ext_iff
SSet.N.ext_iff
surjective' 📖mathematicalSSet.N.toS
SSet.Subcomplex.N.toN
dim
simplex
CategoryTheory.SimplicialObject.δ
CategoryTheory.types
index
type₁_dim 📖mathematicalSSet.S.dim
SSet.N.toS
SSet.Subcomplex.N.toN
type₁
dim
type₁_ne_type₂ 📖type₁_ne_type₂'
type₁_ne_type₂' 📖
type₁_simplex 📖mathematicalSSet.S.simplex
SSet.N.toS
SSet.Subcomplex.N.toN
type₁
simplex
type₂_dim 📖mathematicalSSet.S.dim
SSet.N.toS
SSet.Subcomplex.N.toN
type₂
dim
type₂_simplex 📖mathematicalSSet.S.simplex
SSet.N.toS
SSet.Subcomplex.N.toN
type₂
CategoryTheory.SimplicialObject.δ
CategoryTheory.types
dim
index
simplex

SSet.Subcomplex.PairingCore.IsInner

Theorems

NameKindAssumesProvesValidatesDepends On
ne_last 📖
ne_zero 📖

SSet.Subcomplex.PairingCore.IsProper

Theorems

NameKindAssumesProvesValidatesDepends On
isUniquelyCodimOneFace 📖mathematicalSSet.S.IsUniquelyCodimOneFace
SSet.N.toS
SSet.Subcomplex.N.toN
SSet.Subcomplex.PairingCore.type₂
SSet.Subcomplex.PairingCore.type₁

SSet.Subcomplex.PairingCore.IsRegular

Theorems

NameKindAssumesProvesValidatesDepends On
toIsProper 📖mathematicalSSet.Subcomplex.PairingCore.IsProper
wf 📖mathematicalSSet.Subcomplex.PairingCore.ι
SSet.Subcomplex.PairingCore.AncestralRel

---

← Back to Index