Documentation

Mathlib.AlgebraicTopology.SimplicialSet.AnodyneExtensions.PairingCore

Helper structure in order to construct pairings #

In this file, we introduce a helper structure Subcomplex.PairingCore in order to construct a pairing for a subcomplex of a simplicial set. The main difference with Subcomplex.Pairing are that we provide an index type ι and a function dim : ι → ℕ which allow to parametrize type (II) and (I) simplices in such a way that, definitionally, their dimensions are respectively dim s or dim s + 1 for s : ι.

structure SSet.Subcomplex.PairingCore {X : SSet} (A : X.Subcomplex) :
Type (max u (v + 1))

A helper structure in order to construct a pairing for a subcomplex of a simplicial set X. The main difference with Pairing is that we provide an index type ι and a function dim : ι → ℕ which allow to parametrize type (I) simplices as simplex s : X _⦋dim s + 1⦌ for s : ι, and type (II) simplices as a face of simplex s in X _⦋dim s⦌.

Instances For
    noncomputable def SSet.Subcomplex.Pairing.pairingCore {X : SSet} {A : X.Subcomplex} (P : A.Pairing) [P.IsProper] :

    The PairingCore structure induced by a pairing. The opposite construction is PairingCore.pairing.

    Equations
      Instances For
        def SSet.Subcomplex.PairingCore.type₁ {X : SSet} {A : X.Subcomplex} (h : A.PairingCore) (s : h.ι) :
        A.N

        The type (I) simplices of h : A.PairingCore, as a family indexed by h.ι.

        Equations
          Instances For
            @[simp]
            theorem SSet.Subcomplex.PairingCore.type₁_dim {X : SSet} {A : X.Subcomplex} (h : A.PairingCore) (s : h.ι) :
            (h.type₁ s).dim = h.dim s + 1
            def SSet.Subcomplex.PairingCore.type₂ {X : SSet} {A : X.Subcomplex} (h : A.PairingCore) (s : h.ι) :
            A.N

            The type (II) simplices of h : A.PairingCore, as a family indexed by h.ι.

            Equations
              Instances For
                @[simp]
                theorem SSet.Subcomplex.PairingCore.type₂_dim {X : SSet} {A : X.Subcomplex} (h : A.PairingCore) (s : h.ι) :
                (h.type₂ s).dim = h.dim s
                theorem SSet.Subcomplex.PairingCore.surjective {X : SSet} {A : X.Subcomplex} (h : A.PairingCore) (x : A.N) :
                ∃ (s : h.ι), x = h.type₁ s x = h.type₂ s

                The type (I) simplices of h : A.PairingCore, as a subset of A.N.

                Equations
                  Instances For

                    The type (II) simplices of h : A.PairingCore, as a subset of A.N.

                    Equations
                      Instances For
                        noncomputable def SSet.Subcomplex.PairingCore.equivI {X : SSet} {A : X.Subcomplex} (h : A.PairingCore) :
                        h.ι h.I

                        The bijection h.ι ≃ h.I when h : A.PairingCore.

                        Equations
                          Instances For
                            noncomputable def SSet.Subcomplex.PairingCore.equivII {X : SSet} {A : X.Subcomplex} (h : A.PairingCore) :
                            h.ι h.II

                            The bijection h.ι ≃ h.II when h : A.PairingCore.

                            Equations
                              Instances For
                                noncomputable def SSet.Subcomplex.PairingCore.pairing {X : SSet} {A : X.Subcomplex} (h : A.PairingCore) :

                                The pairing induced by h : A.PairingCore.

                                Equations
                                  Instances For

                                    The condition that h : A.PairingCore is proper, i.e. for each s : h.ι, the type (II) simplex h.type₂ s is uniquely a 1-codimensional face of the type (I) simplex h.type₁ s.

                                    Instances
                                      theorem SSet.Subcomplex.PairingCore.isUniquelyCodimOneFace_index_coe {X : SSet} {A : X.Subcomplex} (h : A.PairingCore) [h.IsProper] (s : h.ι) {d : } (hd : h.dim s = d) :
                                      (.index hd) = (h.index s)

                                      The condition that h : A.PairingCore involves only inner horns.

                                      Instances

                                        The ancestrality relation on the index type of h : A.PairingCore.

                                        Equations
                                          Instances For

                                            When the ancestrality relation is well founded, we say that h : A.PairingCore is regular.

                                            Instances