Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Subcomplex

Subcomplexes of a simplicial set #

Given a simplicial set X, this file defines the type X.Subcomplex of subcomplexes of X as an abbreviation for Subfunctor X. It also introduces a coercion from X.Subcomplex to SSet.

Implementation note #

SSet.{u} is defined as Cᵒᵖ ⥤ Type u, but it is not an abbreviation. This is the reason why Subfunctor.ι is redefined here as Subcomplex.ι so that this morphism appears as a morphism in SSet instead of a morphism in the category of presheaves.

@[reducible, inline]
abbrev SSet.Subcomplex (X : SSet) :

The complete lattice of subcomplexes of a simplicial set.

Equations
    Instances For
      @[reducible, inline]

      The underlying simplicial set of a subcomplex.

      Equations
        Instances For
          @[reducible, inline]
          abbrev SSet.Subcomplex.ι {X : SSet} (A : X.Subcomplex) :

          If A : Subcomplex X, this is the inclusion A ⟶ X in the category SSet.

          Equations
            Instances For
              @[reducible, inline]
              abbrev SSet.Subcomplex.homOfLE {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ S₂) :
              S₁.toSSet S₂.toSSet

              Given an inequality S₁ ≤ S₂ between subcomplexes of a simplicial set, this is the induced morphism in the category SSet.

              Equations
                Instances For
                  theorem SSet.Subcomplex.homOfLE_comp {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ S₂) {S₃ : X.Subcomplex} (h' : S₂ S₃) :
                  @[simp]
                  theorem SSet.Subcomplex.homOfLE_app_val {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ S₂) (Δ : SimplexCategoryᵒᵖ) (x : (S₁.obj Δ)) :
                  ((homOfLE h).app Δ x) = x
                  @[simp]
                  theorem SSet.Subcomplex.homOfLE_ι {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ S₂) :
                  def SSet.Subcomplex.eqToIso {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ = S₂) :
                  S₁.toSSet S₂.toSSet

                  This is the isomorphism of simplicial sets corresponding to an equality of subcomplexes.

                  Equations
                    Instances For
                      @[simp]
                      theorem SSet.Subcomplex.eqToIso_hom {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ = S₂) :
                      @[simp]
                      theorem SSet.Subcomplex.eqToIso_inv {X : SSet} {S₁ S₂ : X.Subcomplex} (h : S₁ = S₂) :

                      The functor which sends A : X.Subcomplex to A.toSSet.

                      Equations
                        Instances For
                          @[simp]
                          theorem SSet.Subcomplex.toSSetFunctor_map {X : SSet} {X✝ Y✝ : X.Subcomplex} (h : X✝ Y✝) :

                          If X : SSet, this is the isomorphism of simplicial sets from ⊤ : X.Subcomplex to X.

                          Equations
                            Instances For
                              @[simp]
                              theorem SSet.Subcomplex.topIso_inv_app_coe (X : SSet) (X✝ : SimplexCategoryᵒᵖ) (a✝ : X.obj X✝) :
                              ((topIso X).inv.app X✝ a✝) = a✝

                              If X is a simplicial set, then the empty subcomplex of X is an initial object in SSet.

                              Equations
                                Instances For
                                  @[reducible, inline]

                                  The subcomplex of a simplicial set that is generated by a simplex.

                                  Equations
                                    Instances For
                                      @[reducible, inline]
                                      abbrev SSet.Subcomplex.range {X Y : SSet} (f : X Y) :

                                      The range of a morphism of simplicial sets, as a subcomplex.

                                      Equations
                                        Instances For
                                          @[reducible, inline]
                                          abbrev SSet.Subcomplex.toRange {X Y : SSet} (f : X Y) :

                                          The morphism X ⟶ Subcomplex.range f induced by f : X ⟶ Y.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem SSet.Subcomplex.toRange_app_val {X Y : SSet} (f : X Y) {Δ : SimplexCategoryᵒᵖ} (x : X.obj Δ) :
                                              ((toRange f).app Δ x) = f.app Δ x
                                              def SSet.Subcomplex.lift {X Y : SSet} (f : X Y) {B : Y.Subcomplex} (hf : range f B) :

                                              Given a morphism of simplicial sets f : X ⟶ Y whose range is ≤ B for some B : Y.Subcomplex, this is the induced morphism X ⟶ B.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem SSet.Subcomplex.lift_ι {X Y : SSet} (f : X Y) {B : Y.Subcomplex} (hf : range f B) :
                                                  @[simp]
                                                  theorem SSet.Subcomplex.lift_app_coe {X Y : SSet} (f : X Y) {B : Y.Subcomplex} (hf : range f B) {n : SimplexCategoryᵒᵖ} (x : X.obj n) :
                                                  ((lift f hf).app n x) = f.app n x
                                                  def SSet.Subcomplex.preimage {X Y : SSet} (A : X.Subcomplex) (p : Y X) :

                                                  The preimage of a subcomplex by a morphism of simplicial sets.

                                                  Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem SSet.Subcomplex.preimage_obj {X Y : SSet} (A : X.Subcomplex) (p : Y X) (n : SimplexCategoryᵒᵖ) :
                                                      (A.preimage p).obj n = p.app n ⁻¹' A.obj n
                                                      @[simp]
                                                      theorem SSet.Subcomplex.preimage_max {X Y : SSet} (A B : X.Subcomplex) (p : Y X) :
                                                      (AB).preimage p = A.preimage pB.preimage p
                                                      @[simp]
                                                      theorem SSet.Subcomplex.preimage_min {X Y : SSet} (A B : X.Subcomplex) (p : Y X) :
                                                      (AB).preimage p = A.preimage pB.preimage p
                                                      @[simp]
                                                      theorem SSet.Subcomplex.preimage_iSup {X Y : SSet} {ι : Type u_1} (A : ιX.Subcomplex) (p : Y X) :
                                                      (⨆ (i : ι), A i).preimage p = ⨆ (i : ι), (A i).preimage p
                                                      @[simp]
                                                      theorem SSet.Subcomplex.preimage_iInf {X Y : SSet} {ι : Type u_1} (A : ιX.Subcomplex) (p : Y X) :
                                                      (⨅ (i : ι), A i).preimage p = ⨅ (i : ι), (A i).preimage p
                                                      def SSet.Subcomplex.image {X Y : SSet} (A : X.Subcomplex) (f : X Y) :

                                                      The image of a subcomplex by a morphism of simplicial sets.

                                                      Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem SSet.Subcomplex.image_obj {X Y : SSet} (A : X.Subcomplex) (f : X Y) (i : SimplexCategoryᵒᵖ) :
                                                          (A.image f).obj i = f.app i '' A.obj i
                                                          theorem SSet.Subcomplex.image_le_iff {X Y : SSet} (A : X.Subcomplex) (f : X Y) (Z : Y.Subcomplex) :
                                                          A.image f Z A Z.preimage f
                                                          theorem SSet.Subcomplex.image_iSup {X Y : SSet} {ι : Type u_1} (S : ιX.Subcomplex) (f : X Y) :
                                                          (⨆ (i : ι), S i).image f = ⨆ (i : ι), (S i).image f
                                                          @[simp]
                                                          theorem SSet.Subcomplex.preimage_range {X Y : SSet} (f : X Y) :
                                                          @[simp]
                                                          theorem SSet.Subcomplex.image_le_range {X Y : SSet} (A : X.Subcomplex) (f : X Y) :
                                                          def SSet.Subcomplex.toImage {X Y : SSet} (A : X.Subcomplex) (f : X Y) :

                                                          Given a morphism of simplicial sets f : X ⟶ Y and a subcomplex A of X, this is the induced morphism from A to A.image f.

                                                          Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem SSet.Subcomplex.toImage_app_coe {X Y : SSet} (A : X.Subcomplex) (f : X Y) (U : SimplexCategoryᵒᵖ) (x : A.toSSet.obj U) :
                                                              ((A.toImage f).app U x) = f.app U x
                                                              theorem SSet.Subcomplex.image_monotone {X Y : SSet} (f : X Y) :
                                                              Monotone fun (S : X.Subcomplex) => S.image f
                                                              @[simp]
                                                              theorem SSet.Subcomplex.image_preimage_le {X Y : SSet} (B : X.Subcomplex) (f : Y X) :
                                                              (B.preimage f).image f B
                                                              def SSet.Subcomplex.fromPreimage {X Y : SSet} (A : X.Subcomplex) (p : Y X) :

                                                              Given a morphism of simplicial sets p : Y ⟶ X and A : X.Subcomplex, this is the induced morphism (A.preimage p : SSet) ⟶ (A : SSet).

                                                              Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem SSet.Subcomplex.fromPreimage_app_coe {X Y : SSet} (A : X.Subcomplex) (p : Y X) (U : SimplexCategoryᵒᵖ) (x : (A.preimage p).toSSet.obj U) :
                                                                  ((A.fromPreimage p).app U x) = p.app U x