Documentation Verification Report

Subcomplex

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/Subcomplex.lean

Statistics

MetricCount
DefinitionseqToIso, fromPreimage, homOfLE, image, instCoeOut, instDecidableEqObjOppositeSimplexCategoryToSSet, instUniqueHomToSSetBot, isInitialBot, ofSimplex, preimage, range, toImage, toRange, toSSet, toSSetFunctor, topIso, ι
17
TheoremseqToIso_hom, eqToIso_inv, fromPreimage_app_coe, fromPreimage_ι, fromPreimage_ι_assoc, homOfLE_app_val, homOfLE_comp, homOfLE_comp_assoc, homOfLE_refl, homOfLE_ι, homOfLE_ι_assoc, image_comp, image_eq_range, image_iSup, image_id, image_le_iff, image_le_range, image_monotone, image_obj, image_ofSimplex, image_preimage_le, image_top, instEpiToImage, instEpiToRange, instIsIsoToRangeOfMono, instMonoToRange, instMonoι, instSubsingletonHomToSSetBot, lift_app_coe, lift_ι, lift_ι_assoc, mem_ofSimplex_obj, mem_ofSimplex_obj_iff, mono_homOfLE, ofSimplex_le_iff, ofSimplex_ι, preimage_eq_top_iff, preimage_iInf, preimage_iSup, preimage_max, preimage_min, preimage_obj, preimage_range, range_comp, range_eq_top, range_eq_top_iff, toImage_app_coe, toImage_ι, toImage_ι_assoc, toRange_app_val, toRange_ι, toRange_ι_assoc, toSSetFunctor_map, toSSetFunctor_obj, topIso_hom, topIso_inv_app_coe, topIso_inv_ι, topIso_inv_ι_assoc, instBalanced
59
Total76

SSet

Theorems

NameKindAssumesProvesValidatesDepends On
instBalanced 📖mathematicalCategoryTheory.Balanced
SSet
largeCategory
CategoryTheory.NatTrans.isIso_iff_isIso_app
CategoryTheory.isIso_iff_bijective
CategoryTheory.mono_iff_injective
CategoryTheory.instMonoAppOfFunctor
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
CategoryTheory.Limits.Types.hasLimitsOfSize
UnivLE.self
CategoryTheory.epi_iff_surjective
CategoryTheory.instEpiAppOfFunctor
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CategoryTheory.Limits.Types.hasColimitsOfSize

SSet.Subcomplex

Definitions

NameCategoryTheorems
eqToIso 📖CompOp
2 mathmath: eqToIso_hom, eqToIso_inv
fromPreimage 📖CompOp
3 mathmath: fromPreimage_ι_assoc, fromPreimage_app_coe, fromPreimage_ι
homOfLE 📖CompOp
11 mathmath: toSSetFunctor_map, homOfLE_refl, eqToIso_hom, homOfLE_comp_assoc, homOfLE_ι_assoc, homOfLE_ι, homOfLE_comp, homOfLE_app_val, BicartSq.isPushout, eqToIso_inv, mono_homOfLE
image 📖CompOp
17 mathmath: SSet.RelativeMorphism.image_le, toImage_ι, image_obj, image_id, toImage_ι_assoc, toImage_app_coe, instEpiToImage, image_le_iff, image_monotone, image_comp, image_top, image_preimage_le, image_eq_range, image_ofSimplex, range_comp, image_le_range, image_iSup
instCoeOut 📖CompOp
instDecidableEqObjOppositeSimplexCategoryToSSet 📖CompOp
instUniqueHomToSSetBot 📖CompOp
isInitialBot 📖CompOp
ofSimplex 📖CompOp
28 mathmath: mem_ofSimplex_obj_iff, SSet.ofSimplex_le_skeleton, SSet.iSup_subcomplexOfSimplex_prod_eq_top, range_eq_ofSimplex, SSet.stdSimplex.instFiniteToSSetOfSimplex, ofSimplexProd_eq_range, SSet.stdSimplex.face_eq_ofSimplex, SSet.PtSimplex.RelStruct.δ_castSucc_map, SSet.PtSimplex.RelStruct.δ_castSucc_map_assoc, SSet.PtSimplex.MulStruct.δ_succ_succ_map_assoc, SSet.RelativeMorphism.ofSimplex₀_map, SSet.PtSimplex.MulStruct.δ_succ_succ_map, SSet.PtSimplex.MulStruct.δ_succ_castSucc_map, SSet.skeleton_succ, iSup_ofSimplex_nonDegenerate_eq_top, ofSimplex_le_iff, image_ofSimplex, SSet.PtSimplex.MulStruct.δ_castSucc_castSucc_map_assoc, mem_ofSimplex_obj, SSet.stdSimplex.ofSimplex_yonedaEquiv_δ, ofSimplex_ι, SSet.RelativeMorphism.const_map, SSet.PtSimplex.RelStruct.δ_succ_map, SSet.PtSimplex.MulStruct.δ_succ_castSucc_map_assoc, SSet.stdSimplex.face_singleton_compl, SSet.skeletonOfMono_succ, SSet.PtSimplex.RelStruct.δ_succ_map_assoc, SSet.PtSimplex.MulStruct.δ_castSucc_castSucc_map
preimage 📖CompOp
13 mathmath: preimage_eq_top_iff, fromPreimage_ι_assoc, preimage_min, preimage_range, image_le_iff, SSet.RelativeMorphism.le_preimage, preimage_obj, image_preimage_le, fromPreimage_app_coe, preimage_max, preimage_iSup, fromPreimage_ι, preimage_iInf
range 📖CompOp
25 mathmath: preimage_eq_top_iff, toRange_ι, SSet.instHasDimensionLTToSSetRange, range_eq_ofSimplex, range_eq_top, toRange_app_val, toRange_ι_assoc, ofSimplexProd_eq_range, SSet.stdSimplex.range_δ, preimage_range, image_top, instMonoToRange, image_eq_range, SSet.range_eq_iSup_sigma_ι, range_comp, SSet.skeletonOfMono_zero, SSet.iSup_range_eq_top_of_isColimit, image_le_range, SSet.finite_range, range_tensorHom, instEpiToRange, range_eq_top_iff, SSet.range_eq_iSup_of_isColimit, instIsIsoToRangeOfMono, SSet.skeletonOfMono_succ
toImage 📖CompOp
4 mathmath: toImage_ι, toImage_ι_assoc, toImage_app_coe, instEpiToImage
toRange 📖CompOp
6 mathmath: toRange_ι, toRange_app_val, toRange_ι_assoc, instMonoToRange, instEpiToRange, instIsIsoToRangeOfMono
toSSet 📖CompOp
121 mathmath: lift_ι, toRange_ι, SSet.instHasDimensionLTToSSetRange, SSet.horn₃₁.desc.multicofork_π_two, SSet.horn.faceSingletonComplIso_inv_ι_assoc, SSet.stdSimplex.faceSingletonIso_zero_hom_comp_ι_eq_δ, fromPreimage_ι_assoc, SSet.finite_iSup_iff, SSet.horn₃₁.exists_desc, SSet.stdSimplex.instFiniteToSSetOfSimplex, toImage_ι, SSet.horn.yonedaEquiv_ι, SSet.horn₃₂.desc.multicofork_π_one, topIso_inv_app_coe, SSet.horn₃₂.ι₁_desc, homOfLE_refl, toRange_app_val, toRange_ι_assoc, hasDimensionLT_of_le, lift_ι_assoc, lift_app_coe, degenerate_eq_top_iff, toImage_ι_assoc, topIso_inv_ι, SSet.horn₃₁.ι₂_desc_assoc, instHasDimensionLTToSSet, SSet.PtSimplex.RelStruct.δ_castSucc_map, SSet.horn.faceSingletonComplIso_inv_ι, toSSetFunctor_obj, SSet.hasDimensionLT_subcomplex_top_iff, SSet.horn₃₁.ι₃_desc_assoc, instSubsingletonHomToSSetBot, SSet.instFiniteToSSet, SSet.modelCategoryQuillen.instHasLiftingPropertyιHornHAddNatOfNatOfFibration, eqToIso_hom, SSet.PtSimplex.RelStruct.δ_castSucc_map_assoc, SSet.PtSimplex.MulStruct.δ_succ_succ_map_assoc, SSet.RelativeMorphism.ofSimplex₀_map, toImage_app_coe, SSet.PtSimplex.MulStruct.δ_succ_succ_map, homOfLE_comp_assoc, instEpiToImage, SSet.stdSimplex.faceSingletonIso_zero_hom_comp_ι_eq_δ_assoc, SSet.horn₃₁.desc.multicofork_π_two_assoc, SSet.horn.spineId_map_hornInclusion, SSet.horn₃₁.desc.multicofork_π_zero_assoc, yonedaEquiv_coe, homOfLE_ι_assoc, SSet.RelativeMorphism.map_eq_of_mem, SSet.modelCategoryQuillen.horn_ι_mem_J, SSet.instHasDimensionLTToSSetBotSubcomplex, SSet.PtSimplex.MulStruct.δ_succ_castSucc_map, mem_nonDegenerate_iff, SSet.horn₃₂.exists_desc, SSet.stdSimplex.faceSingletonIso_one_hom_comp_ι_eq_δ, SSet.horn₃₁.ι₂_desc, mem_degenerate_iff, SSet.stdSimplex.faceSingletonComplIso_hom_ι, SSet.horn₃₂.ι₃_desc, SSet.RelativeMorphism.comm_assoc, instMonoToRange, SSet.horn₃₂.ι₀_desc, homOfLE_ι, image_eq_range, SSet.RelativeMorphism.comm, SSet.horn.faceι_ι, homOfLE_comp, topIso_inv_ι_assoc, SSet.horn₂₁.isPushout, fromPreimage_app_coe, homOfLE_app_val, BicartSq.isPushout, eqToIso_inv, instMonoι, SSet.horn₃₂.ι₁_desc_assoc, SSet.horn₃₂.desc.multicofork_π_zero_assoc, SSet.horn.faceι_ι_assoc, SSet.hasDimensionLT_iSup_iff, SSet.horn.spineId_vertex_coe, SSet.horn.spineId_arrow_coe, SSet.horn₃₁.desc.multicofork_π_three_assoc, SSet.PtSimplex.MulStruct.δ_castSucc_castSucc_map_assoc, SSet.horn₃₁.desc.multicofork_π_zero, SSet.finite_subcomplex_top_iff, liftPath_arrow_coe, SSet.horn₂₀.isPushout, SSet.Quasicategory.hornFilling, SSet.finite_range, SSet.horn₃₂.desc.multicofork_π_three, SSet.horn₃₁.ι₀_desc_assoc, SSet.modelCategoryQuillen.boundary_ι_mem_I, SSet.stdSimplex.faceSingletonComplIso_hom_ι_assoc, liftPath_vertex_coe, ofSimplex_ι, mono_homOfLE, SSet.horn₂₂.isPushout, SSet.Quasicategory.hornFilling', instEpiToRange, SSet.RelativeMorphism.Homotopy.rel, SSet.stdSimplex.faceSingletonIso_one_hom_comp_ι_eq_δ_assoc, fromPreimage_ι, SSet.horn₃₁.ι₃_desc, SSet.PtSimplex.RelStruct.δ_succ_map, map_ι_liftPath, topIso_hom, SSet.horn.ι_ι_assoc, SSet.horn₃₂.desc.multicofork_π_zero, SSet.horn₃₂.desc.multicofork_π_three_assoc, SSet.horn₃₂.desc.multicofork_π_one_assoc, SSet.KanComplex.hornFilling, SSet.horn.ι_ι, SSet.horn₃₁.ι₀_desc, SSet.RelativeMorphism.map_coe, SSet.PtSimplex.MulStruct.δ_succ_castSucc_map_assoc, SSet.horn₃₁.desc.multicofork_π_three, SSet.horn₃₂.ι₃_desc_assoc, SSet.horn₃₂.ι₀_desc_assoc, instIsIsoToRangeOfMono, SSet.PtSimplex.RelStruct.δ_succ_map_assoc, SSet.PtSimplex.MulStruct.δ_castSucc_castSucc_map, SSet.RelativeMorphism.Homotopy.rel_assoc
toSSetFunctor 📖CompOp
16 mathmath: SSet.horn₃₁.desc.multicofork_π_two, toSSetFunctor_map, SSet.horn₃₂.desc.multicofork_π_one, SSet.horn₃₁.desc.multicofork_pt, toSSetFunctor_obj, SSet.horn₃₁.desc.multicofork_π_two_assoc, SSet.horn₃₁.desc.multicofork_π_zero_assoc, SSet.horn₃₂.desc.multicofork_π_zero_assoc, SSet.horn₃₁.desc.multicofork_π_three_assoc, SSet.horn₃₁.desc.multicofork_π_zero, SSet.horn₃₂.desc.multicofork_π_three, SSet.horn₃₂.desc.multicofork_pt, SSet.horn₃₂.desc.multicofork_π_zero, SSet.horn₃₂.desc.multicofork_π_three_assoc, SSet.horn₃₂.desc.multicofork_π_one_assoc, SSet.horn₃₁.desc.multicofork_π_three
topIso 📖CompOp
4 mathmath: topIso_inv_app_coe, topIso_inv_ι, topIso_inv_ι_assoc, topIso_hom
ι 📖CompOp
37 mathmath: lift_ι, toRange_ι, SSet.stdSimplex.faceSingletonIso_zero_hom_comp_ι_eq_δ, fromPreimage_ι_assoc, toImage_ι, toRange_ι_assoc, lift_ι_assoc, toImage_ι_assoc, SSet.modelCategoryQuillen.instHasLiftingPropertyιHornHAddNatOfNatOfFibration, SSet.stdSimplex.faceSingletonIso_zero_hom_comp_ι_eq_δ_assoc, SSet.horn.spineId_map_hornInclusion, yonedaEquiv_coe, homOfLE_ι_assoc, SSet.modelCategoryQuillen.horn_ι_mem_J, SSet.stdSimplex.faceSingletonIso_one_hom_comp_ι_eq_δ, SSet.stdSimplex.faceSingletonComplIso_hom_ι, SSet.RelativeMorphism.comm_assoc, homOfLE_ι, image_eq_range, SSet.RelativeMorphism.comm, SSet.horn.faceι_ι, instMonoι, SSet.horn.faceι_ι_assoc, SSet.Quasicategory.hornFilling, SSet.modelCategoryQuillen.boundary_ι_mem_I, SSet.stdSimplex.faceSingletonComplIso_hom_ι_assoc, ofSimplex_ι, SSet.Quasicategory.hornFilling', SSet.RelativeMorphism.Homotopy.rel, SSet.stdSimplex.faceSingletonIso_one_hom_comp_ι_eq_δ_assoc, fromPreimage_ι, map_ι_liftPath, topIso_hom, SSet.horn.ι_ι_assoc, SSet.KanComplex.hornFilling, SSet.horn.ι_ι, SSet.RelativeMorphism.Homotopy.rel_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
eqToIso_hom 📖mathematicalCategoryTheory.Iso.hom
SSet
SSet.largeCategory
toSSet
eqToIso
homOfLE
eqToIso_inv 📖mathematicalCategoryTheory.Iso.inv
SSet
SSet.largeCategory
toSSet
eqToIso
homOfLE
fromPreimage_app_coe 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.NatTrans.app
toSSet
preimage
fromPreimage
Set.preimage
fromPreimage_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
preimage
fromPreimage
ι
fromPreimage_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
preimage
fromPreimage
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fromPreimage_ι
homOfLE_app_val 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.NatTrans.app
toSSet
homOfLE
homOfLE_comp 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
homOfLE
LE.le.trans
homOfLE_comp_assoc 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
homOfLE
LE.le.trans
LE.le.trans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homOfLE_comp
homOfLE_refl 📖mathematicalhomOfLE
CategoryTheory.CategoryStruct.id
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
homOfLE_ι 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
homOfLE
ι
homOfLE_ι_assoc 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
homOfLE
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homOfLE_ι
image_comp 📖mathematicalimage
CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Subfunctor.ext
Set.ext
Set.image_congr
image_eq_range 📖mathematicalimage
range
toSSet
CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
ι
CategoryTheory.Subfunctor.ext
Set.ext
image_iSup 📖mathematicalimage
iSup
SSet.Subcomplex
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Subfunctor.ext
Set.ext
CategoryTheory.Subfunctor.iSup_obj
image_id 📖mathematicalimage
CategoryTheory.CategoryStruct.id
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Subfunctor.ext
Set.ext
Set.image_congr
Set.image_id'
image_le_iff 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
image
preimage
image_le_range 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
image
range
preimage_range
image_monotone 📖mathematicalMonotone
SSet.Subcomplex
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
image
image_le_iff
LE.le.trans
le_refl
image_obj 📖mathematicalCategoryTheory.Subfunctor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
image
Set.image
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.NatTrans.app
image_ofSimplex 📖mathematicalimage
ofSimplex
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
le_antisymm
image_le_iff
ofSimplex_le_iff
preimage_obj
Set.mem_preimage
mem_ofSimplex_obj
image_preimage_le 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
image
preimage
image_le_iff
le_refl
image_top 📖mathematicalimage
Top.top
SSet.Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
range
CategoryTheory.Subfunctor.ext
Set.ext
Set.image_univ
instEpiToImage 📖mathematicalCategoryTheory.Epi
SSet
SSet.largeCategory
toSSet
image
toImage
range_eq_top_iff
le_antisymm
instEpiToRange 📖mathematicalCategoryTheory.Epi
SSet
SSet.largeCategory
toSSet
range
toRange
CategoryTheory.Subfunctor.instEpiFunctorTypeToRange
instIsIsoToRangeOfMono 📖mathematicalCategoryTheory.IsIso
SSet
SSet.largeCategory
toSSet
range
toRange
CategoryTheory.isIso_of_mono_of_epi
SSet.instBalanced
instMonoToRange
instEpiToRange
instMonoToRange 📖mathematicalCategoryTheory.Mono
SSet
SSet.largeCategory
toSSet
range
toRange
CategoryTheory.mono_of_mono_fac
toRange_ι
instMonoι 📖mathematicalCategoryTheory.Mono
SSet
SSet.largeCategory
toSSet
ι
CategoryTheory.Subfunctor.instMonoFunctorTypeι
instSubsingletonHomToSSetBot 📖mathematicalQuiver.Hom
SSet
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
Bot.bot
SSet.Subcomplex
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
SSet.hom_ext
CategoryTheory.types_ext
lift_app_coe 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
range
CategoryTheory.Functor.obj
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.NatTrans.app
toSSet
lift
lift_ι 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
range
CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
lift
ι
lift_ι_assoc 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
range
CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
lift
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_ι
mem_ofSimplex_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
ofSimplex
CategoryTheory.Subfunctor.mem_ofSection_obj
mem_ofSimplex_obj_iff 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
ofSimplex
CategoryTheory.Functor.map
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
mono_homOfLE 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Mono
SSet
SSet.largeCategory
toSSet
homOfLE
CategoryTheory.mono_of_mono_fac
instMonoι
homOfLE_ι
ofSimplex_le_iff 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
ofSimplex
CategoryTheory.Functor.obj
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.Subfunctor.ofSection_le_iff
ofSimplex_ι 📖mathematicalι
ofSimplex
SSet.const
toSSet
SSet.hom_ext
CategoryTheory.types_ext
SimplexCategory.instSubsingletonHomMkOfNatNat
preimage_eq_top_iff 📖mathematicalpreimage
Top.top
SSet.Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.instPartialOrderSubfunctor
range
image_top
image_le_iff
top_le_iff
preimage_iInf 📖mathematicalpreimage
iInf
SSet.Subcomplex
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Subfunctor.ext
Set.ext
CategoryTheory.Subfunctor.iInf_obj
preimage_iSup 📖mathematicalpreimage
iSup
SSet.Subcomplex
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Subfunctor.ext
Set.ext
CategoryTheory.Subfunctor.iSup_obj
Set.preimage_iUnion
preimage_max 📖mathematicalpreimage
SSet.Subcomplex
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
preimage_min 📖mathematicalpreimage
SSet.Subcomplex
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
preimage_obj 📖mathematicalCategoryTheory.Subfunctor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
preimage
Set.preimage
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.NatTrans.app
preimage_range 📖mathematicalpreimage
range
Top.top
SSet.Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
le_antisymm
image_le_iff
image_top
le_refl
range_comp 📖mathematicalrange
CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
image
CategoryTheory.Subfunctor.ext
Set.ext
range_eq_top 📖mathematicalrange
Top.top
SSet.Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
range_eq_top_iff
range_eq_top_iff 📖mathematicalrange
Top.top
SSet.Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Epi
SSet
SSet.largeCategory
CategoryTheory.NatTrans.epi_iff_epi_app
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
CategoryTheory.Subfunctor.ext_iff
toImage_app_coe 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
image
CategoryTheory.NatTrans.app
toSSet
toImage
toImage_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
image
toImage
ι
toImage_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
image
toImage
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toImage_ι
toRange_app_val 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
range
CategoryTheory.NatTrans.app
toSSet
toRange
toRange_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
range
toRange
ι
toRange_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
range
toRange
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toRange_ι
toSSetFunctor_map 📖mathematicalCategoryTheory.Functor.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
SSet
SSet.largeCategory
toSSetFunctor
homOfLE
toSSetFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
SSet
SSet.largeCategory
toSSetFunctor
toSSet
topIso_hom 📖mathematicalCategoryTheory.Iso.hom
SSet
SSet.largeCategory
toSSet
Top.top
SSet.Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
topIso
ι
topIso_inv_app_coe 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
Top.top
SSet.Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.NatTrans.app
toSSet
CategoryTheory.Iso.inv
SSet
SSet.largeCategory
topIso
topIso_inv_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
Top.top
SSet.Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Iso.inv
topIso
CategoryTheory.Subfunctor.ι
CategoryTheory.CategoryStruct.id
topIso_inv_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
toSSet
Top.top
SSet.Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Iso.inv
topIso
CategoryTheory.Subfunctor.ι
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
topIso_inv_ι

---

← Back to Index