Documentation

Mathlib.CategoryTheory.Subfunctor.Basic

Subfunctor of types #

We define subfunctors of a type-valued functors.

Main definition #

CategoryTheory.Subfunctor : A subfunctor of a type-valued functor.

structure CategoryTheory.Subfunctor {C : Type u} [Category.{v, u} C] (F : Functor C (Type w)) :
Type (max u w)

A subfunctor of a functor consists of a subset of F.obj U for every U, compatible with the restriction maps F.map i.

  • obj (U : C) : Set (F.obj U)

    If G is a subfunctor of F, then the sections of G on U forms a subset of sections of F on U.

  • map {U V : C} (i : U V) : self.obj U F.map i ⁻¹' self.obj V

    If G is a subfunctor of F and i : U ⟶ V, then for each G-sections on U x, F i x is in F(V).

Instances For
    theorem CategoryTheory.Subfunctor.ext {C : Type u} {inst✝ : Category.{v, u} C} {F : Functor C (Type w)} {x y : Subfunctor F} (obj : x.obj = y.obj) :
    x = y
    theorem CategoryTheory.Subfunctor.ext_iff {C : Type u} {inst✝ : Category.{v, u} C} {F : Functor C (Type w)} {x y : Subfunctor F} :
    x = y x.obj = y.obj
    @[deprecated CategoryTheory.Subfunctor (since := "2025-12-11")]
    def CategoryTheory.Subpresheaf {C : Type u} [Category.{v, u} C] (F : Functor C (Type w)) :
    Type (max u w)

    Alias of CategoryTheory.Subfunctor.


    A subfunctor of a functor consists of a subset of F.obj U for every U, compatible with the restriction maps F.map i.

    Equations
      Instances For
        theorem CategoryTheory.Subfunctor.le_def {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (S T : Subfunctor F) :
        S T ∀ (U : C), S.obj U T.obj U
        theorem CategoryTheory.Subfunctor.sSup_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (S : Set (Subfunctor F)) (U : C) :
        (sSup S).obj U = sSup ((fun (T : Subfunctor F) => T.obj U) '' S)
        theorem CategoryTheory.Subfunctor.sInf_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (S : Set (Subfunctor F)) (U : C) :
        (sInf S).obj U = sInf ((fun (T : Subfunctor F) => T.obj U) '' S)
        @[simp]
        theorem CategoryTheory.Subfunctor.iSup_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} {ι : Type u_1} (S : ιSubfunctor F) (U : C) :
        (⨆ (i : ι), S i).obj U = ⋃ (i : ι), (S i).obj U
        @[simp]
        theorem CategoryTheory.Subfunctor.iInf_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} {ι : Type u_1} (S : ιSubfunctor F) (U : C) :
        (⨅ (i : ι), S i).obj U = ⋂ (i : ι), (S i).obj U
        @[simp]
        theorem CategoryTheory.Subfunctor.max_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (S T : Subfunctor F) (i : C) :
        (ST).obj i = S.obj i T.obj i
        @[simp]
        theorem CategoryTheory.Subfunctor.min_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (S T : Subfunctor F) (i : C) :
        (ST).obj i = S.obj i T.obj i
        theorem CategoryTheory.Subfunctor.max_min {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (S₁ S₂ T : Subfunctor F) :
        (S₁S₂)T = S₁TS₂T
        theorem CategoryTheory.Subfunctor.iSup_min {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} {ι : Type u_1} (S : ιSubfunctor F) (T : Subfunctor F) :
        (⨆ (i : ι), S i)T = ⨆ (i : ι), S iT

        The subfunctor as a functor.

        Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Subfunctor.toFunctor_map_coe {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (G : Subfunctor F) (x✝ x✝¹ : C) (i : x✝ x✝¹) (x : (G.obj x✝)) :
            (G.toFunctor.map i x) = F.map i x
            @[simp]
            theorem CategoryTheory.Subfunctor.toFunctor_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (G : Subfunctor F) (U : C) :
            G.toFunctor.obj U = (G.obj U)

            The inclusion of a subfunctor to the original functor.

            Equations
              Instances For
                @[simp]
                theorem CategoryTheory.Subfunctor.ι_app {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (G : Subfunctor F) (x✝ : C) (x : G.toFunctor.obj x✝) :
                G.ι.app x✝ x = x

                The inclusion of a subfunctor to a larger subfunctor

                Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.Subfunctor.homOfLe_app_coe {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} {G G' : Subfunctor F} (h : G G') (U : C) (x : G.toFunctor.obj U) :
                    ((homOfLe h).app U x) = x
                    theorem CategoryTheory.Subfunctor.nat_trans_naturality {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (f : F' G.toFunctor) {U V : C} (i : U V) (x : F'.obj U) :
                    (f.app V (F'.map i x)) = F.map i (f.app U x)
                    @[deprecated CategoryTheory.Subfunctor.le_def (since := "2025-12-11")]
                    theorem CategoryTheory.Subfunctor.Subpresheaf.le_def {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (S T : Subfunctor F) :
                    S T ∀ (U : C), S.obj U T.obj U

                    Alias of CategoryTheory.Subfunctor.le_def.

                    @[deprecated CategoryTheory.Subfunctor.top_obj (since := "2025-12-11")]

                    Alias of CategoryTheory.Subfunctor.top_obj.

                    @[deprecated CategoryTheory.Subfunctor.bot_obj (since := "2025-12-11")]

                    Alias of CategoryTheory.Subfunctor.bot_obj.

                    @[deprecated CategoryTheory.Subfunctor.sSup_obj (since := "2025-12-11")]
                    theorem CategoryTheory.Subfunctor.Subpresheaf.sSup_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (S : Set (Subfunctor F)) (U : C) :
                    (sSup S).obj U = sSup ((fun (T : Subfunctor F) => T.obj U) '' S)

                    Alias of CategoryTheory.Subfunctor.sSup_obj.

                    @[deprecated CategoryTheory.Subfunctor.sInf_obj (since := "2025-12-11")]
                    theorem CategoryTheory.Subfunctor.Subpresheaf.sInf_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (S : Set (Subfunctor F)) (U : C) :
                    (sInf S).obj U = sInf ((fun (T : Subfunctor F) => T.obj U) '' S)

                    Alias of CategoryTheory.Subfunctor.sInf_obj.

                    @[deprecated CategoryTheory.Subfunctor.iSup_obj (since := "2025-12-11")]
                    theorem CategoryTheory.Subfunctor.Subpresheaf.iSup_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} {ι : Type u_1} (S : ιSubfunctor F) (U : C) :
                    (⨆ (i : ι), S i).obj U = ⋃ (i : ι), (S i).obj U

                    Alias of CategoryTheory.Subfunctor.iSup_obj.

                    @[deprecated CategoryTheory.Subfunctor.iInf_obj (since := "2025-12-11")]
                    theorem CategoryTheory.Subfunctor.Subpresheaf.iInf_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} {ι : Type u_1} (S : ιSubfunctor F) (U : C) :
                    (⨅ (i : ι), S i).obj U = ⋂ (i : ι), (S i).obj U

                    Alias of CategoryTheory.Subfunctor.iInf_obj.

                    @[deprecated CategoryTheory.Subfunctor.max_obj (since := "2025-12-11")]
                    theorem CategoryTheory.Subfunctor.Subpresheaf.max_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (S T : Subfunctor F) (i : C) :
                    (ST).obj i = S.obj i T.obj i

                    Alias of CategoryTheory.Subfunctor.max_obj.

                    @[deprecated CategoryTheory.Subfunctor.min_obj (since := "2025-12-11")]
                    theorem CategoryTheory.Subfunctor.Subpresheaf.min_obj {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (S T : Subfunctor F) (i : C) :
                    (ST).obj i = S.obj i T.obj i

                    Alias of CategoryTheory.Subfunctor.min_obj.

                    @[deprecated CategoryTheory.Subfunctor.max_min (since := "2025-12-11")]
                    theorem CategoryTheory.Subfunctor.Subpresheaf.max_min {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (S₁ S₂ T : Subfunctor F) :
                    (S₁S₂)T = S₁TS₂T

                    Alias of CategoryTheory.Subfunctor.max_min.

                    @[deprecated CategoryTheory.Subfunctor.iSup_min (since := "2025-12-11")]
                    theorem CategoryTheory.Subfunctor.Subpresheaf.iSup_min {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} {ι : Type u_1} (S : ιSubfunctor F) (T : Subfunctor F) :
                    (⨆ (i : ι), S i)T = ⨆ (i : ι), S iT

                    Alias of CategoryTheory.Subfunctor.iSup_min.

                    @[deprecated CategoryTheory.Subfunctor.toFunctor (since := "2025-12-11")]

                    Alias of CategoryTheory.Subfunctor.toFunctor.


                    The subfunctor as a functor.

                    Equations
                      Instances For
                        @[deprecated CategoryTheory.Subfunctor.ι (since := "2025-12-11")]

                        Alias of CategoryTheory.Subfunctor.ι.


                        The inclusion of a subfunctor to the original functor.

                        Equations
                          Instances For
                            @[deprecated CategoryTheory.Subfunctor.homOfLe (since := "2025-12-11")]

                            Alias of CategoryTheory.Subfunctor.homOfLe.


                            The inclusion of a subfunctor to a larger subfunctor

                            Equations
                              Instances For
                                @[deprecated CategoryTheory.Subfunctor.homOfLe_ι (since := "2025-12-11")]

                                Alias of CategoryTheory.Subfunctor.homOfLe_ι.

                                @[deprecated CategoryTheory.Subfunctor.eq_top_iff_isIso (since := "2025-12-11")]

                                Alias of CategoryTheory.Subfunctor.eq_top_iff_isIso.

                                @[deprecated CategoryTheory.Subfunctor.nat_trans_naturality (since := "2025-12-11")]
                                theorem CategoryTheory.Subfunctor.Subpresheaf.nat_trans_naturality {C : Type u} [Category.{v, u} C] {F F' : Functor C (Type w)} (G : Subfunctor F) (f : F' G.toFunctor) {U V : C} (i : U V) (x : F'.obj U) :
                                (f.app V (F'.map i x)) = F.map i (f.app U x)

                                Alias of CategoryTheory.Subfunctor.nat_trans_naturality.

                                @[deprecated CategoryTheory.Subfunctor.toFunctor (since := "2025-12-11")]

                                Alias of CategoryTheory.Subfunctor.toFunctor.


                                The subfunctor as a functor.

                                Equations
                                  Instances For
                                    @[deprecated CategoryTheory.Subfunctor.toFunctor_obj (since := "2025-12-11")]

                                    Alias of CategoryTheory.Subfunctor.toFunctor_obj.

                                    @[deprecated CategoryTheory.Subfunctor.toFunctor_map_coe (since := "2025-12-11")]
                                    theorem CategoryTheory.Subfunctor.Subpresheaf.toPresheaf_map_coe {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (G : Subfunctor F) (x✝ x✝¹ : C) (i : x✝ x✝¹) (x : (G.obj x✝)) :
                                    (G.toFunctor.map i x) = F.map i x

                                    Alias of CategoryTheory.Subfunctor.toFunctor_map_coe.