Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Subfunctor/Basic.lean

Statistics

MetricCount
DefinitionsSubfunctor, homOfLe, toFunctor, toPresheaf, ι, homOfLe, instCoeHeadObjToFunctor, obj, toFunctor, ι, Subpresheaf, instCompleteLatticeSubfunctor, instPartialOrderSubfunctor
13
Theoremsbot_obj, eq_top_iff_isIso, homOfLe_ι, iInf_obj, iSup_min, iSup_obj, le_def, max_min, max_obj, min_obj, nat_trans_naturality, sInf_obj, sSup_obj, toPresheaf_map_coe, toPresheaf_obj, top_obj, bot_obj, eq_top_iff_isIso, ext, ext_iff, homOfLe_app_coe, homOfLe_ι, homOfLe_ι_assoc, iInf_obj, iSup_min, iSup_obj, instIsIsoFunctorTypeιTop, instMonoFunctorTypeHomOfLe, instMonoFunctorTypeι, instNonempty, le_def, map, max_min, max_obj, min_obj, nat_trans_naturality, sInf_obj, sSup_obj, toFunctor_map_coe, toFunctor_obj, top_obj, ι_app
42
Total55

CategoryTheory

Definitions

NameCategoryTheorems
Subfunctor 📖CompData
69 mathmath: Subfunctor.Subpresheaf.equalizer_le, Subfunctor.Subpresheaf.max_obj, Subfunctor.instNonempty, Subfunctor.range_le_equalizer_iff, Subfunctor.range_toRange, Subfunctor.Subpresheaf.preimage_eq_top_iff, Subfunctor.Subpresheaf.iSup_obj, Subfunctor.Subpresheaf.min_obj, Subfunctor.max_obj, Subfunctor.max_min, Subfunctor.Subpresheaf.image_le_iff, Subfunctor.isGeneratedBy_iff, Subfunctor.Subpresheaf.isGeneratedBy_iff, Subfunctor.IsGeneratedBy.ofSection_le, Subfunctor.image_le_iff, Subfunctor.sSup_obj, Subfunctor.equivalenceMonoOver_inverse_map, Subfunctor.range_eq_top, Subfunctor.equivalenceMonoOver_functor_map, Subfunctor.Subpresheaf.image_top, Subfunctor.le_sheafify, Subfunctor.Subpresheaf.bot_obj, Subfunctor.equivalenceMonoOver_inverse_obj, Subfunctor.eq_top_iff_isIso, Subfunctor.Subpresheaf.le_def, Subfunctor.iSup_min, Subfunctor.equalizer_le, Presheaf.isLocallySurjective_iff_range_sheafify_eq_top, Subfunctor.equivalenceMonoOver_functor_obj, Subfunctor.min_obj, Subfunctor.orderIsoSubobject_apply, Presheaf.isLocallySurjective_iff_range_sheafify_eq_top', Subfunctor.Subpresheaf.epi_iff_range_eq_top, Subfunctor.IsGeneratedBy.iSup_eq, Subfunctor.le_def, Subfunctor.Subpresheaf.iInf_obj, Subfunctor.Subpresheaf.top_obj, Subfunctor.Subpresheaf.range_le_equalizer_iff, Subfunctor.sInf_obj, Subfunctor.Subpresheaf.range_id, Subfunctor.instIsIsoFunctorTypeιTop, Subfunctor.bot_obj, Subfunctor.Subpresheaf.iSup_min, Subfunctor.image_top, Subfunctor.equivalenceMonoOver_unitIso, Subfunctor.Subpresheaf.sInf_obj, Subfunctor.orderIsoSubobject_symm_apply, Subfunctor.image_iSup, Subfunctor.ofSection_le_iff, Subfunctor.Subpresheaf.sSup_obj, Subfunctor.iInf_obj, Subfunctor.Subpresheaf.ofSection_le_iff, Subfunctor.top_obj, Subpresheaf.le_sheafify, Subfunctor.Subpresheaf.range_comp_le, Subfunctor.iSup_obj, Subfunctor.Subpresheaf.image_iSup, Subfunctor.Subpresheaf.max_min, presheafIsGeneratedBy_of_isFinite, Subfunctor.preimage_eq_top_iff, Subfunctor.Subpresheaf.eq_top_iff_isIso, Subfunctor.Subpresheaf.IsGeneratedBy.ofSection_le, Subfunctor.epi_iff_range_eq_top, Subfunctor.Subpresheaf.IsGeneratedBy.iSup_eq, Subfunctor.Subpresheaf.range_eq_top, Subfunctor.range_id, Subfunctor.range_comp_le, Subfunctor.equivalenceMonoOver_counitIso, Subfunctor.Subpresheaf.range_toRange
Subpresheaf 📖CompOp
instCompleteLatticeSubfunctor 📖CompOp
95 mathmath: SSet.Subcomplex.preimage_eq_top_iff, SSet.horn₃₁.desc.multicofork_π_two, SSet.iSup_subcomplexOfSimplex_prod_eq_top, Subfunctor.Subpresheaf.max_obj, SSet.finite_iSup_iff, SSet.Subcomplex.range_eq_top, Subfunctor.range_toRange, SSet.horn₃₂.desc.multicofork_π_one, SSet.Subcomplex.topIso_inv_app_coe, Subfunctor.Subpresheaf.preimage_eq_top_iff, Subfunctor.Subpresheaf.iSup_obj, SSet.iSup_skeleton, Subfunctor.Subpresheaf.min_obj, SSet.Subcomplex.preimage_min, SSet.Subcomplex.eq_top_iff_of_hasDimensionLT, Subfunctor.max_obj, SSet.Subcomplex.topIso_inv_ι, SSet.horn₃₁.desc.multicofork_pt, Subfunctor.max_min, SSet.hasDimensionLT_subcomplex_top_iff, SSet.Subcomplex.instSubsingletonHomToSSetBot, Subfunctor.isGeneratedBy_iff, Subfunctor.Subpresheaf.isGeneratedBy_iff, Subfunctor.sSup_obj, SSet.Subcomplex.eq_top_iff_contains_nonDegenerate, SSet.Subcomplex.preimage_range, Subfunctor.range_eq_top, Subfunctor.Subpresheaf.image_top, SSet.horn₃₁.desc.multicofork_π_two_assoc, SSet.horn₃₁.desc.multicofork_π_zero_assoc, SSet.instHasDimensionLTToSSetBotSubcomplex, Subfunctor.Subpresheaf.bot_obj, Subfunctor.eq_top_iff_isIso, Subfunctor.iSup_min, SSet.skeleton_succ, SSet.Subcomplex.iSup_ofSimplex_nonDegenerate_eq_top, Presheaf.isLocallySurjective_iff_range_sheafify_eq_top, Subfunctor.min_obj, Presheaf.isLocallySurjective_iff_range_sheafify_eq_top', Subfunctor.Subpresheaf.epi_iff_range_eq_top, SSet.Subcomplex.image_top, Subfunctor.IsGeneratedBy.iSup_eq, Subfunctor.Subpresheaf.iInf_obj, Subfunctor.Subpresheaf.top_obj, Subfunctor.sInf_obj, Subfunctor.Subpresheaf.range_id, Subfunctor.instIsIsoFunctorTypeιTop, Subfunctor.bot_obj, SSet.Subcomplex.topIso_inv_ι_assoc, SSet.horn_eq_iSup, SSet.range_eq_iSup_sigma_ι, SSet.Subcomplex.BicartSq.isPushout, SSet.horn₃₂.desc.multicofork_π_zero_assoc, Subfunctor.Subpresheaf.iSup_min, Subfunctor.image_top, SSet.hasDimensionLT_iSup_iff, SSet.iSup_skeletonOfMono, SSet.iSup_range_eq_top_of_isColimit, SSet.horn₃₁.desc.multicofork_π_three_assoc, SSet.horn₃₁.desc.multicofork_π_zero, SSet.finite_subcomplex_top_iff, SSet.Subcomplex.preimage_max, Subfunctor.Subpresheaf.sInf_obj, SSet.horn₃₂.desc.multicofork_π_three, Subfunctor.image_iSup, Subfunctor.Subpresheaf.sSup_obj, Subfunctor.iInf_obj, SSet.boundary_eq_iSup, Subfunctor.top_obj, SSet.stdSimplex.face_inter_face, SSet.horn₃₂.desc.multicofork_pt, Subfunctor.iSup_obj, SSet.Subcomplex.range_eq_top_iff, SSet.Subcomplex.preimage_iSup, SSet.N.iSup_subcomplex_eq_top, Subfunctor.Subpresheaf.image_iSup, SSet.Subcomplex.topIso_hom, Subfunctor.Subpresheaf.max_min, presheafIsGeneratedBy_of_isFinite, SSet.horn₃₂.desc.multicofork_π_zero, SSet.horn₃₂.desc.multicofork_π_three_assoc, SSet.horn₃₂.desc.multicofork_π_one_assoc, Subfunctor.preimage_eq_top_iff, Subfunctor.Subpresheaf.eq_top_iff_isIso, SSet.horn₃₁.desc.multicofork_π_three, Subfunctor.epi_iff_range_eq_top, Subfunctor.Subpresheaf.IsGeneratedBy.iSup_eq, Subfunctor.Subpresheaf.range_eq_top, SSet.Subcomplex.image_iSup, Subfunctor.range_id, Subfunctor.Subpresheaf.range_toRange, SSet.range_eq_iSup_of_isColimit, SSet.Subcomplex.preimage_iInf, SSet.skeletonOfMono_succ, SSet.skeleton_zero
instPartialOrderSubfunctor 📖CompOp
56 mathmath: SSet.RelativeMorphism.image_le, SSet.Subcomplex.preimage_eq_top_iff, Subfunctor.Subpresheaf.equalizer_le, SSet.ofSimplex_le_skeleton, SSet.Subcomplex.toSSetFunctor_map, Subfunctor.range_le_equalizer_iff, Subfunctor.Subpresheaf.preimage_eq_top_iff, SSet.iSup_skeleton, SSet.skeleton_le_skeletonOfMono, Subfunctor.Subpresheaf.image_le_iff, SSet.Subcomplex.toSSetFunctor_obj, Subfunctor.IsGeneratedBy.ofSection_le, Subfunctor.image_le_iff, Subfunctor.equivalenceMonoOver_inverse_map, SSet.Subcomplex.image_le_iff, Subfunctor.equivalenceMonoOver_functor_map, SSet.Subcomplex.image_monotone, SSet.skeleton_obj_eq_top, SSet.RelativeMorphism.le_preimage, Subfunctor.le_sheafify, Subfunctor.equivalenceMonoOver_inverse_obj, SSet.mem_skeleton_obj_iff_of_nonDegenerate, Subfunctor.Subpresheaf.le_def, Subfunctor.equalizer_le, SSet.skeleton_succ, Subfunctor.equivalenceMonoOver_functor_obj, Subfunctor.orderIsoSubobject_apply, SSet.orderEmbeddingN_apply, Subfunctor.le_def, SSet.face_le_horn, SSet.Subcomplex.image_preimage_le, Subfunctor.Subpresheaf.range_le_equalizer_iff, SSet.Subcomplex.ofSimplex_le_iff, SSet.Subcomplex.le_iff_of_hasDimensionLT, SSet.skeletonOfMono_zero, SSet.Subcomplex.le_iff_contains_nonDegenerate, SSet.mem_skeleton, SSet.iSup_skeletonOfMono, SSet.skeletonOfMono_obj_eq_top, Subfunctor.equivalenceMonoOver_unitIso, SSet.Subcomplex.image_le_range, SSet.mem_skeletonOfMono_obj_iff_of_nonDegenerate, Subfunctor.orderIsoSubobject_symm_apply, SSet.N.le_iff, Subfunctor.ofSection_le_iff, Subfunctor.Subpresheaf.ofSection_le_iff, Subpresheaf.le_sheafify, Subfunctor.Subpresheaf.range_comp_le, SSet.stdSimplex.face_le_face_iff, Subfunctor.preimage_eq_top_iff, Subfunctor.Subpresheaf.IsGeneratedBy.ofSection_le, Subfunctor.range_comp_le, Subfunctor.equivalenceMonoOver_counitIso, SSet.S.le_def, SSet.skeletonOfMono_succ, SSet.skeleton_zero

CategoryTheory.Subfunctor

Definitions

NameCategoryTheorems
homOfLe 📖CompOp
10 mathmath: homOfLe_app_coe, equivalenceMonoOver_functor_map, homOfLe_ι_assoc, homOfLe_ι, Subpresheaf.homOfLe_ι, instMonoFunctorTypeHomOfLe, equivalenceMonoOver_unitIso, to_sheafifyLift, CategoryTheory.Subpresheaf.to_sheafifyLift, equivalenceMonoOver_counitIso
instCoeHeadObjToFunctor 📖CompOp
obj 📖CompOp
102 mathmath: SSet.Subcomplex.mem_ofSimplex_obj_iff, Subpresheaf.toPresheaf_obj, Subpresheaf.max_obj, toFunctor_obj, SSet.Subcomplex.image_obj, SSet.Subcomplex.topIso_inv_app_coe, SSet.Subcomplex.toRange_app_val, SSet.Subcomplex.lift_app_coe, Subpresheaf.iSup_obj, SSet.Subcomplex.degenerate_eq_top_iff, homOfLe_app_coe, Subpresheaf.min_obj, SSet.Subcomplex.eq_top_iff_of_hasDimensionLT, max_obj, nat_trans_naturality, SSet.PtSimplex.RelStruct.δ_castSucc_map, sSup_obj, SSet.Subcomplex.eq_top_iff_contains_nonDegenerate, SSet.PtSimplex.RelStruct.δ_castSucc_map_assoc, SSet.PtSimplex.MulStruct.δ_succ_succ_map_assoc, ofSection_obj, SSet.RelativeMorphism.ofSimplex₀_map, SSet.Subcomplex.toImage_app_coe, SSet.PtSimplex.MulStruct.δ_succ_succ_map, Subpresheaf.mem_ofSection_obj, SSet.horn_obj, SSet.skeleton_obj_eq_top, SSet.Subcomplex.yonedaEquiv_coe, SSet.stdSimplex.face_obj, SSet.PtSimplex.MulStruct.δ_succ_castSucc_map, Subpresheaf.mem_equalizer_iff, SSet.Subcomplex.mem_nonDegenerate_iff, Subpresheaf.bot_obj, SSet.mem_skeleton_obj_iff_of_nonDegenerate, Subpresheaf.IsGeneratedBy.mem, SSet.stdSimplex.mem_face_iff, preimage_obj, Subpresheaf.le_def, SSet.horn.edge_coe, SSet.Subcomplex.mem_degenerate_iff, min_obj, SSet.Subcomplex.prod_obj, map, SSet.Subcomplex.preimage_obj, le_def, Subpresheaf.iInf_obj, Subpresheaf.top_obj, isSheaf_iff, sInf_obj, mem_equalizer_iff, SSet.Subcomplex.ofSimplex_le_iff, SSet.Subcomplex.le_iff_of_hasDimensionLT, bot_obj, SSet.horn.edge₃_coe_down, SSet.Subcomplex.fromPreimage_app_coe, SSet.Subcomplex.homOfLE_app_val, SSet.stdSimplex.obj₀Equiv_symm_mem_face_iff, range_obj, toFunctor_map_coe, Subpresheaf.nat_trans_naturality, SSet.Subcomplex.le_iff_contains_nonDegenerate, SSet.horn_obj_zero, SSet.mem_skeleton, SSet.horn.spineId_vertex_coe, toRange_app_val, SSet.horn.spineId_arrow_coe, SSet.skeletonOfMono_obj_eq_top, SSet.PtSimplex.MulStruct.δ_castSucc_castSucc_map_assoc, mem_ofSection_obj, SSet.Subcomplex.mem_ofSimplex_obj, Subpresheaf.sInf_obj, SSet.mem_skeletonOfMono_obj_iff_of_nonDegenerate, SSet.Subcomplex.PairingCore.notMem₁, image_obj, Subpresheaf.toRange_app_val, toRangeSheafify_app_coe, ofSection_le_iff, Subpresheaf.sSup_obj, iInf_obj, ι_app, CategoryTheory.Subpresheaf.isSheaf_iff, Subpresheaf.ofSection_le_iff, top_obj, CategoryTheory.FunctorToTypes.mem_fromOverSubfunctor_iff, IsGeneratedBy.mem, SSet.horn.primitiveEdge_coe_down, iSup_obj, Subpresheaf.toPresheaf_map_coe, SSet.PtSimplex.RelStruct.δ_succ_map, SSet.Subcomplex.PairingCore.notMem₂, ext_iff, equalizer_obj, sieveOfSection_apply, SSet.RelativeMorphism.map_coe, SSet.Subcomplex.N.notMem, SSet.PtSimplex.MulStruct.δ_succ_castSucc_map_assoc, SSet.horn.const_val_apply, SSet.horn.primitiveTriangle_coe, lift_app_coe, SSet.skeletonOfMono_succ, SSet.PtSimplex.RelStruct.δ_succ_map_assoc, SSet.PtSimplex.MulStruct.δ_castSucc_castSucc_map
toFunctor 📖CompOp
76 mathmath: isSeparated, Subpresheaf.toPresheaf_obj, Subpresheaf.equalizer.fork_ι, Subpresheaf.equalizer.condition, toFunctor_obj, range_le_equalizer_iff, range_toRange, homOfLe_app_coe, nat_trans_naturality, range_ι, CategoryTheory.Subpresheaf.isSeparated, equalizer.ι_ι_assoc, equivalenceMonoOver_functor_map, homOfLe_ι_assoc, homOfLe_ι, SSet.Subcomplex.yonedaEquiv_coe, Subpresheaf.mem_equalizer_iff, lift_ι, eq_top_iff_isIso, Subpresheaf.toRange_ι, equivalenceMonoOver_functor_obj, orderIsoSubobject_apply, instEpiFunctorTypeToRange, Subpresheaf.range_ι, Subpresheaf.range_le_equalizer_iff, isSheaf_iff, mem_equalizer_iff, lift_ι_assoc, toRange_ι_assoc, Subpresheaf.homOfLe_ι, instIsIsoFunctorTypeιTop, instIsIsoFunctorTypeToRangeOfMono, sheafify_isSheaf, toFunctor_map_coe, equalizer.condition, Subpresheaf.nat_trans_naturality, fromPreimage_ι, instMonoFunctorTypeHomOfLe, toRange_app_val, equivalenceMonoOver_unitIso, CategoryTheory.Subpresheaf.sheafify_isSheaf, CategoryTheory.Presheaf.instIsLocallySurjectiveHomToRangeSheafify, instMonoFunctorTypeι_1, equalizer.fork_pt, range_subobjectMk_ι, Subpresheaf.fromPreimage_ι, Subpresheaf.toRange_app_val, toRangeSheafify_app_coe, fromPreimage_ι_assoc, ι_app, CategoryTheory.Subpresheaf.isSheaf_iff, Subpresheaf.family_of_elements_compatible, CategoryTheory.Subpresheaf.eq_sheafify_iff, Subpresheaf.subobjectMk_range_arrow, Subpresheaf.toPresheaf_map_coe, Subpresheaf.equalizer.ι_ι, to_sheafifyLift, Subpresheaf.range_subobjectMk_ι, CategoryTheory.FunctorToTypes.monoFactorisation_I, instMonoFunctorTypeι, CategoryTheory.Presheaf.instIsLocallyInjectiveHomιOpposite, equalizer.condition_assoc, family_of_elements_compatible, equalizer_obj, Subpresheaf.eq_top_iff_isIso, equalizer.ι_ι, equalizer.fork_ι, CategoryTheory.Subpresheaf.to_sheafifyLift, eq_sheafify_iff, lift_app_coe, equivalenceMonoOver_counitIso, Subpresheaf.range_toRange, subobjectMk_range_arrow, Subpresheaf.lift_ι, toRange_ι, CategoryTheory.Sheaf.image_val
ι 📖CompOp
41 mathmath: range_le_equalizer_iff, equalizer.lift_ι', SSet.Subcomplex.topIso_inv_ι, CategoryTheory.Sheaf.imageι_val, range_ι, equalizer.ι_ι_assoc, equalizer.lift_ι'_assoc, equivalenceMonoOver_functor_map, homOfLe_ι_assoc, homOfLe_ι, lift_ι, eq_top_iff_isIso, Subpresheaf.toRange_ι, equivalenceMonoOver_functor_obj, orderIsoSubobject_apply, Subpresheaf.range_ι, Subpresheaf.range_le_equalizer_iff, lift_ι_assoc, toRange_ι_assoc, Subpresheaf.homOfLe_ι, instIsIsoFunctorTypeιTop, SSet.Subcomplex.topIso_inv_ι_assoc, fromPreimage_ι, equivalenceMonoOver_unitIso, range_subobjectMk_ι, Subpresheaf.fromPreimage_ι, fromPreimage_ι_assoc, ι_app, Subpresheaf.subobjectMk_range_arrow, Subpresheaf.equalizer.ι_ι, Subpresheaf.range_subobjectMk_ι, CategoryTheory.FunctorToTypes.monoFactorisation_m, instMonoFunctorTypeι, CategoryTheory.Presheaf.instIsLocallyInjectiveHomιOpposite, Subpresheaf.eq_top_iff_isIso, equalizer.ι_ι, equivalenceMonoOver_counitIso, Subpresheaf.equalizer.lift_ι', subobjectMk_range_arrow, Subpresheaf.lift_ι, toRange_ι

Theorems

NameKindAssumesProvesValidatesDepends On
bot_obj 📖mathematicalobj
Bot.bot
CategoryTheory.Subfunctor
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set
CategoryTheory.Functor.obj
CategoryTheory.types
BooleanAlgebra.toBot
Set.instBooleanAlgebra
eq_top_iff_isIso 📖mathematicalTop.top
CategoryTheory.Subfunctor
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
toFunctor
ι
instIsIsoFunctorTypeιTop
ext
Set.ext
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.IsIso.inv_hom_id_apply
ext 📖obj
ext_iff 📖mathematicalobjext
homOfLe_app_coe 📖mathematicalCategoryTheory.Subfunctor
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.Functor.obj
CategoryTheory.types
Set
Set.instMembership
obj
CategoryTheory.NatTrans.app
toFunctor
homOfLe
homOfLe_ι 📖mathematicalCategoryTheory.Subfunctor
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
toFunctor
homOfLe
ι
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
homOfLe_ι_assoc 📖mathematicalCategoryTheory.Subfunctor
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
toFunctor
homOfLe
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homOfLe_ι
iInf_obj 📖mathematicalobj
iInf
CategoryTheory.Subfunctor
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Set.iInter
CategoryTheory.Functor.obj
CategoryTheory.types
Set.sInter_image
Set.iInter_congr_Prop
Set.iInter_exists
Set.iInter_iInter_eq'
iSup_min 📖mathematicalCategoryTheory.Subfunctor
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
ext
Set.ext
iSup_obj
iSup_obj 📖mathematicalobj
iSup
CategoryTheory.Subfunctor
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
CategoryTheory.instCompleteLatticeSubfunctor
Set.iUnion
CategoryTheory.Functor.obj
CategoryTheory.types
Set.sUnion_image
Set.iUnion_congr_Prop
Set.iUnion_exists
Set.iUnion_iUnion_eq'
instIsIsoFunctorTypeιTop 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
toFunctor
Top.top
CategoryTheory.Subfunctor
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
ι
CategoryTheory.NatIso.isIso_of_isIso_app
CategoryTheory.isIso_iff_bijective
Subtype.coe_injective
instMonoFunctorTypeHomOfLe 📖mathematicalCategoryTheory.Subfunctor
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.Mono
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
toFunctor
homOfLe
CategoryTheory.NatTrans.ext
CategoryTheory.congr_app
instMonoFunctorTypeι 📖mathematicalCategoryTheory.Mono
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
toFunctor
ι
CategoryTheory.NatTrans.ext
CategoryTheory.congr_app
instNonempty 📖mathematicalCategoryTheory.Subfunctorbot_nonempty
le_def 📖mathematicalCategoryTheory.Subfunctor
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Set.instLE
obj
map 📖mathematicalSet
CategoryTheory.Functor.obj
CategoryTheory.types
Set.instHasSubset
obj
Set.preimage
CategoryTheory.Functor.map
max_min 📖mathematicalCategoryTheory.Subfunctor
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ext
Set.ext
max_obj 📖mathematicalobj
CategoryTheory.Subfunctor
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Set.instUnion
min_obj 📖mathematicalobj
CategoryTheory.Subfunctor
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Set.instInter
nat_trans_naturality 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
Set
Set.instMembership
obj
CategoryTheory.NatTrans.app
toFunctor
CategoryTheory.Functor.map
CategoryTheory.FunctorToTypes.naturality
sInf_obj 📖mathematicalobj
InfSet.sInf
CategoryTheory.Subfunctor
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Set.instInfSet
Set.image
sSup_obj 📖mathematicalobj
SupSet.sSup
CategoryTheory.Subfunctor
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
CategoryTheory.instCompleteLatticeSubfunctor
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Set.instSupSet
Set.image
toFunctor_map_coe 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
Set
Set.instMembership
obj
CategoryTheory.Functor.map
toFunctor
toFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
toFunctor
Set.Elem
obj
top_obj 📖mathematicalobj
Top.top
CategoryTheory.Subfunctor
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set
CategoryTheory.Functor.obj
CategoryTheory.types
BooleanAlgebra.toTop
Set.instBooleanAlgebra
ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
toFunctor
ι
CategoryTheory.Functor.obj
Set
Set.instMembership
obj

CategoryTheory.Subfunctor.Subpresheaf

Definitions

NameCategoryTheorems
homOfLe 📖CompOp
toFunctor 📖CompOp
toPresheaf 📖CompOp
ι 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
bot_obj 📖mathematicalCategoryTheory.Subfunctor.obj
Bot.bot
CategoryTheory.Subfunctor
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set
CategoryTheory.Functor.obj
CategoryTheory.types
BooleanAlgebra.toBot
Set.instBooleanAlgebra
CategoryTheory.Subfunctor.bot_obj
eq_top_iff_isIso 📖mathematicalTop.top
CategoryTheory.Subfunctor
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Subfunctor.toFunctor
CategoryTheory.Subfunctor.ι
CategoryTheory.Subfunctor.eq_top_iff_isIso
homOfLe_ι 📖mathematicalCategoryTheory.Subfunctor
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Subfunctor.toFunctor
CategoryTheory.Subfunctor.homOfLe
CategoryTheory.Subfunctor.ι
CategoryTheory.Subfunctor.homOfLe_ι
iInf_obj 📖mathematicalCategoryTheory.Subfunctor.obj
iInf
CategoryTheory.Subfunctor
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Set.iInter
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Subfunctor.iInf_obj
iSup_min 📖mathematicalCategoryTheory.Subfunctor
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
CategoryTheory.Subfunctor.iSup_min
iSup_obj 📖mathematicalCategoryTheory.Subfunctor.obj
iSup
CategoryTheory.Subfunctor
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
CategoryTheory.instCompleteLatticeSubfunctor
Set.iUnion
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Subfunctor.iSup_obj
le_def 📖mathematicalCategoryTheory.Subfunctor
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Set.instLE
CategoryTheory.Subfunctor.obj
CategoryTheory.Subfunctor.le_def
max_min 📖mathematicalCategoryTheory.Subfunctor
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CategoryTheory.Subfunctor.max_min
max_obj 📖mathematicalCategoryTheory.Subfunctor.obj
CategoryTheory.Subfunctor
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Set.instUnion
CategoryTheory.Subfunctor.max_obj
min_obj 📖mathematicalCategoryTheory.Subfunctor.obj
CategoryTheory.Subfunctor
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Set.instInter
CategoryTheory.Subfunctor.min_obj
nat_trans_naturality 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Subfunctor.toFunctor
CategoryTheory.Functor.map
CategoryTheory.Subfunctor.nat_trans_naturality
sInf_obj 📖mathematicalCategoryTheory.Subfunctor.obj
InfSet.sInf
CategoryTheory.Subfunctor
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Set.instInfSet
Set.image
CategoryTheory.Subfunctor.sInf_obj
sSup_obj 📖mathematicalCategoryTheory.Subfunctor.obj
SupSet.sSup
CategoryTheory.Subfunctor
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
CategoryTheory.instCompleteLatticeSubfunctor
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Set.instSupSet
Set.image
CategoryTheory.Subfunctor.sSup_obj
toPresheaf_map_coe 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.Functor.map
CategoryTheory.Subfunctor.toFunctor
CategoryTheory.Subfunctor.toFunctor_map_coe
toPresheaf_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Subfunctor.toFunctor
Set.Elem
CategoryTheory.Subfunctor.obj
CategoryTheory.Subfunctor.toFunctor_obj
top_obj 📖mathematicalCategoryTheory.Subfunctor.obj
Top.top
CategoryTheory.Subfunctor
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set
CategoryTheory.Functor.obj
CategoryTheory.types
BooleanAlgebra.toTop
Set.instBooleanAlgebra
CategoryTheory.Subfunctor.top_obj

---

← Back to Index