Documentation Verification Report

Horn

šŸ“ Source: Mathlib/AlgebraicTopology/SimplicialSet/Horn.lean

Statistics

MetricCount
Definitionshorn, const, edge, edgeā‚ƒ, face, faceι, primitiveEdge, primitiveTriangle, ι, Ā«termĪ›[_,_]Ā»
10
Theoremsface_le_horn, const_val_apply, edge_coe, edgeā‚ƒ_coe_down, faceSingletonComplIso_inv_ι, faceSingletonComplIso_inv_ι_assoc, faceι_ι, faceι_ι_assoc, hom_ext, primitiveEdge_coe_down, primitiveTriangle_coe, yonedaEquiv_ι, ι_ι, ι_ι_assoc, horn_eq_iSup, horn_obj, horn_obj_zero
17
Total27

SSet

Definitions

NameCategoryTheorems
horn šŸ“–CompOp
59 mathmath: hornā‚ƒā‚.desc.multicofork_Ļ€_two, horn.faceSingletonComplIso_inv_ι_assoc, hornā‚ƒā‚.exists_desc, horn.yonedaEquiv_ι, hornā‚ƒā‚‚.desc.multicofork_Ļ€_one, hornā‚ƒā‚‚.ι₁_desc, hornā‚‚ā‚‚.sq, hornā‚ƒā‚.ι₂_desc_assoc, hornā‚ƒā‚.desc.multicofork_pt, horn.faceSingletonComplIso_inv_ι, hornā‚ƒā‚.Ī¹ā‚ƒ_desc_assoc, modelCategoryQuillen.instHasLiftingPropertyιHornHAddNatOfNatOfFibration, hornā‚ƒā‚.desc.multicofork_Ļ€_two_assoc, horn.spineId_map_hornInclusion, hornā‚ƒā‚.desc.multicofork_Ļ€_zero_assoc, horn_obj, modelCategoryQuillen.horn_ι_mem_J, hornā‚‚ā‚€.sq, hornā‚ƒā‚‚.exists_desc, horn.edge_coe, hornā‚ƒā‚.ι₂_desc, hornā‚ƒā‚‚.Ī¹ā‚ƒ_desc, hornā‚ƒā‚‚.ι₀_desc, face_le_horn, horn.faceι_ι, horn.edgeā‚ƒ_coe_down, horn₂₁.isPushout, horn_eq_iSup, hornā‚ƒā‚‚.ι₁_desc_assoc, hornā‚ƒā‚‚.desc.multicofork_Ļ€_zero_assoc, horn.faceι_ι_assoc, horn_obj_zero, horn.spineId_vertex_coe, horn.multicoequalizerDiagram, horn.spineId_arrow_coe, hornā‚ƒā‚.desc.multicofork_Ļ€_three_assoc, hornā‚ƒā‚.desc.multicofork_Ļ€_zero, hornā‚‚ā‚€.isPushout, Quasicategory.hornFilling, hornā‚ƒā‚‚.desc.multicofork_Ļ€_three, hornā‚ƒā‚.ι₀_desc_assoc, hornā‚ƒā‚‚.desc.multicofork_pt, hornā‚‚ā‚‚.isPushout, Quasicategory.hornFilling', horn.primitiveEdge_coe_down, hornā‚ƒā‚.Ī¹ā‚ƒ_desc, horn.ι_ι_assoc, hornā‚ƒā‚‚.desc.multicofork_Ļ€_zero, hornā‚ƒā‚‚.desc.multicofork_Ļ€_three_assoc, hornā‚ƒā‚‚.desc.multicofork_Ļ€_one_assoc, KanComplex.hornFilling, horn.ι_ι, hornā‚ƒā‚.ι₀_desc, horn.const_val_apply, hornā‚ƒā‚.desc.multicofork_Ļ€_three, hornā‚ƒā‚‚.Ī¹ā‚ƒ_desc_assoc, horn₂₁.sq, horn.primitiveTriangle_coe, hornā‚ƒā‚‚.ι₀_desc_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
face_le_horn šŸ“–mathematical—Subcomplex
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
largeCategory
stdSimplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
CategoryTheory.Category.opposite
stdSimplex.face
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
horn
—horn_eq_iSup
le_iSup
horn_eq_iSup šŸ“–mathematical—horn
iSup
Subcomplex
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
largeCategory
stdSimplex
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Set.instMembership
—CategoryTheory.Subfunctor.ext
Set.ext
Set.union_singleton
CategoryTheory.Subfunctor.iSup_obj
Set.iUnion_coe_set
Set.iUnion_congr_Prop
horn_obj šŸ“–mathematical—CategoryTheory.Subfunctor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
SSet
largeCategory
stdSimplex
horn
setOf
CategoryTheory.types
Set
Set.instUnion
Set.range
SimplexCategory.len
Opposite.unop
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
stdSimplex.asOrderHom
Set.instSingletonSet
Set.univ
——
horn_obj_zero šŸ“–mathematical—CategoryTheory.Subfunctor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
SSet
largeCategory
stdSimplex
horn
Opposite.op
Top.top
Set
CategoryTheory.types
BooleanAlgebra.toTop
Set.instBooleanAlgebra
—Set.ext
horn_eq_iSup
CategoryTheory.Subfunctor.iSup_obj
Set.iUnion_coe_set
Set.iUnion_congr_Prop
Finset.card_le_card
Eq.le
LE.le.trans
Fintype.card_fin
Finset.card_le_two
Finset.eq_univ_iff_forall
Fintype.complete

SSet.horn

Definitions

NameCategoryTheorems
const šŸ“–CompOp
1 mathmath: const_val_apply
edge šŸ“–CompOp
1 mathmath: edge_coe
edgeā‚ƒ šŸ“–CompOp
1 mathmath: edgeā‚ƒ_coe_down
face šŸ“–CompOp
1 mathmath: yonedaEquiv_ι
faceι šŸ“–CompOp
4 mathmath: faceSingletonComplIso_inv_ι_assoc, faceSingletonComplIso_inv_ι, faceι_ι, faceι_ι_assoc
primitiveEdge šŸ“–CompOp
1 mathmath: primitiveEdge_coe_down
primitiveTriangle šŸ“–CompOp
1 mathmath: primitiveTriangle_coe
ι šŸ“–CompOp
5 mathmath: faceSingletonComplIso_inv_ι_assoc, yonedaEquiv_ι, faceSingletonComplIso_inv_ι, ι_ι_assoc, ι_ι

Theorems

NameKindAssumesProvesValidatesDepends On
const_val_apply šŸ“–mathematical—DFunLike.coe
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
SSet.stdSimplex.instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.horn
const
——
edge_coe šŸ“–mathematicalFinset.card
Finset
Finset.instInsert
Finset.instSingleton
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.horn
edge
SSet.stdSimplex.edge
——
edgeā‚ƒ_coe_down šŸ“–mathematical—CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
Opposite.op
SSet
SSet.largeCategory
SSet.stdSimplex
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.horn
edgeā‚ƒ
PartialOrder.toPreorder
Fin.instPartialOrder
Matrix.vecCons
Matrix.vecEmpty
——
faceSingletonComplIso_inv_ι šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
SSet.Subcomplex.toSSet
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.stdSimplex.face
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
SSet.horn
CategoryTheory.Iso.inv
SSet.stdSimplex.faceSingletonComplIso
ι
faceι
—CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.hom_inv_id_assoc
faceSingletonComplIso_inv_ι_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
SSet.Subcomplex.toSSet
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.stdSimplex.face
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
CategoryTheory.Iso.inv
SSet.stdSimplex.faceSingletonComplIso
SSet.horn
ι
faceι
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
faceSingletonComplIso_inv_ι
faceι_ι šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
SSet.Subcomplex.toSSet
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.stdSimplex.face
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
SSet.horn
faceι
SSet.Subcomplex.ι
——
faceι_ι_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
SSet.Subcomplex.toSSet
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.stdSimplex.face
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
SSet.horn
faceι
SSet.Subcomplex.ι
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
faceι_ι
hom_ext šŸ“–ā€”CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet.Subcomplex.toSSet
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.stdSimplex
SSet.horn
Opposite.op
face
——CategoryTheory.Subfunctor.equalizer_eq_iff
le_antisymm
CategoryTheory.Subfunctor.equalizer_le
SSet.horn_eq_iSup
CategoryTheory.Subfunctor.mem_equalizer_iff
primitiveEdge_coe_down šŸ“–mathematical—CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
Opposite.op
SSet
SSet.largeCategory
SSet.stdSimplex
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.horn
primitiveEdge
PartialOrder.toPreorder
Fin.instPartialOrder
Matrix.vecCons
Matrix.vecEmpty
——
primitiveTriangle_coe šŸ“–mathematical—CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.horn
primitiveTriangle
SSet.stdSimplex.triangle
——
yonedaEquiv_ι šŸ“–mathematical—DFunLike.coe
Equiv
Quiver.Hom
SSet
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.Subcomplex.toSSet
SSet.horn
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
SSet.yonedaEquiv
ι
face
—ι.eq_1
Equiv.apply_symm_apply
ι_ι šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.Subcomplex.toSSet
SSet.horn
ι
SSet.Subcomplex.ι
CategoryTheory.CosimplicialObject.Ī“
—ι.eq_1
face.eq_1
Equiv.symm_apply_apply
CategoryTheory.Subfunctor.lift_ι
ι_ι_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.Subcomplex.toSSet
SSet.horn
ι
SSet.Subcomplex.ι
CategoryTheory.CosimplicialObject.Ī“
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_ι

Simplicial

Definitions

NameCategoryTheorems
Ā«termĪ›[_,_]Ā» šŸ“–CompOp—

---

← Back to Index