Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Horn

Horns #

This file introduces horns Λ[n, i].

horn n i (or Λ[n, i]) is the i-th horn of the n-th standard simplex, where i : n. It consists of all m-simplices α of Δ[n] for which the union of {i} and the range of α is not all of n (when viewing α as monotone function m → n).

Equations
    Instances For

      The i-th horn Λ[n, i] of the standard n-simplex

      Equations
        Instances For
          theorem SSet.horn_eq_iSup (n : ) (i : Fin (n + 1)) :
          horn n i = ⨆ (j : {i}), stdSimplex.face {j}
          theorem SSet.face_le_horn {n : } (i j : Fin (n + 1)) (h : i j) :
          @[simp]
          theorem SSet.horn_obj_zero (n : ) (i : Fin (n + 3)) :
          def SSet.horn.const (n : ) (i k : Fin (n + 3)) (m : SimplexCategoryᵒᵖ) :
          ((horn (n + 2) i).obj m)

          The (degenerate) subsimplex of Λ[n+2, i] concentrated in vertex k.

          Equations
            Instances For
              @[simp]
              theorem SSet.horn.const_val_apply (n : ) (i k : Fin (n + 3)) {m : } (a : Fin (m + 1)) :
              (const n i k (Opposite.op (SimplexCategory.mk m))) a = k
              def SSet.horn.edge (n : ) (i a b : Fin (n + 1)) (hab : a b) (H : {i, a, b}.card n) :

              The edge of Λ[n, i] with endpoints a and b.

              This edge only exists if {i, a, b} has cardinality less than n.

              Equations
                Instances For
                  @[simp]
                  theorem SSet.horn.edge_coe (n : ) (i a b : Fin (n + 1)) (hab : a b) (H : {i, a, b}.card n) :
                  (edge n i a b hab H) = stdSimplex.edge n a b hab
                  def SSet.horn.edge₃ (n : ) (i a b : Fin (n + 1)) (hab : a b) (H : 3 n) :

                  Alternative constructor for the edge of Λ[n, i] with endpoints a and b, assuming 3 ≤ n.

                  Equations
                    Instances For
                      @[simp]
                      theorem SSet.horn.edge₃_coe_down (n : ) (i a b : Fin (n + 1)) (hab : a b) (H : 3 n) :
                      (↑(edge₃ n i a b hab H)).down = SimplexCategory.Hom.mk { toFun := ![a, b], monotone' := }
                      def SSet.horn.primitiveEdge {n : } {i : Fin (n + 1)} (h₀ : 0 < i) (hₙ : i < Fin.last n) (j : Fin n) :

                      The edge of Λ[n, i] with endpoints j and j+1.

                      This constructor assumes 0 < i < n, which is the type of horn that occurs in the horn-filling condition of quasicategories.

                      Equations
                        Instances For
                          @[simp]
                          theorem SSet.horn.primitiveEdge_coe_down {n : } {i : Fin (n + 1)} (h₀ : 0 < i) (hₙ : i < Fin.last n) (j : Fin n) :
                          (↑(primitiveEdge h₀ hₙ j)).down = SimplexCategory.Hom.mk { toFun := ![j.castSucc, j.succ], monotone' := }
                          def SSet.horn.primitiveTriangle {n : } (i : Fin (n + 4)) (h₀ : 0 < i) (hₙ : i < Fin.last (n + 3)) (k : ) (h : k < n + 2) :

                          The triangle in the standard simplex with vertices k, k+1, and k+2.

                          This constructor assumes 0 < i < n, which is the type of horn that occurs in the horn-filling condition of quasicategories.

                          Equations
                            Instances For
                              @[simp]
                              theorem SSet.horn.primitiveTriangle_coe {n : } (i : Fin (n + 4)) (h₀ : 0 < i) (hₙ : i < Fin.last (n + 3)) (k : ) (h : k < n + 2) :
                              (primitiveTriangle i h₀ hₙ k h) = stdSimplex.triangle k, k + 1, k + 2,
                              def SSet.horn.face {n : } (i j : Fin (n + 2)) (h : j i) :

                              The jth face of codimension 1 of the i-th horn.

                              Equations
                                Instances For
                                  theorem SSet.horn.hom_ext {n : } {i : Fin (n + 2)} {S : SSet} (σ₁ σ₂ : (horn (n + 1) i).toSSet S) (h : ∀ (j : Fin (n + 2)) (h : j i), σ₁.app (Opposite.op (SimplexCategory.mk n)) (face i j h) = σ₂.app (Opposite.op (SimplexCategory.mk n)) (face i j h)) :
                                  σ₁ = σ₂

                                  Two morphisms from a horn are equal if they are equal on all suitable faces.

                                  def SSet.horn.faceι {n : } (i j : Fin (n + 1)) (hij : j i) :

                                  Given i and j in Fin (n + 1) such that j ≠ i, this is the inclusion of stdSimplex.face {j}ᶜ in the horn horn n i.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem SSet.horn.faceι_ι {n : } (i j : Fin (n + 1)) (hij : j i) :
                                      def SSet.horn.ι {n : } (i j : Fin (n + 2)) (hij : j i) :

                                      Given i and j in Fin (n + 2) such that j ≠ i, this is the inclusion of Δ[n] in horn (n + 1) i given by stdSimplex.δ j.

                                      Equations
                                        Instances For
                                          theorem SSet.horn.yonedaEquiv_ι {n : } (i j : Fin (n + 2)) (hij : j i) :
                                          yonedaEquiv (ι i j hij) = face i j hij
                                          @[simp]
                                          theorem SSet.horn.ι_ι {n : } (i j : Fin (n + 2)) (hij : j i) :