instCartesianMonoidalCategory 📖 | CompOp | 68 mathmath: ι₀_snd_assoc, CategoryTheory.SimplicialThickening.SimplicialCategory.comp_id, iSup_subcomplexOfSimplex_prod_eq_top, instHasDimensionLETensorUnitOfNatNat, tensorHom_app_apply, prodStdSimplex.instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat, hasDimensionLT_prod, RelativeMorphism.Homotopy.h₀_assoc, prodStdSimplex.objEquiv_apply_fst, instFiniteTensorUnit, prodStdSimplex.strictMono_orderHomOfSimplex_iff, Subcomplex.ofSimplexProd_eq_range, prodStdSimplex.objEquiv_δ_apply, prodStdSimplex.objEquiv_naturality, instFiniteTensorObj, prodStdSimplex.objEquiv_apply_snd, hoFunctor.unitHomEquiv_eq, instFiniteObjOppositeSimplexCategoryTensorObj, leftUnitor_inv_app_apply, ι₀_fst_assoc, ι₁_comp, whiskerRight_app_apply, rightUnitor_inv_app_apply, ι₀_snd, CategoryTheory.SimplicialThickening.functor_map, ι₁_snd_assoc, instHasDimensionLETensorObjHAddNat, ι₁_app_fst, ι₁_snd, whiskerLeft_app_apply, Subcomplex.prod_obj, instHasDimensionLTTensorObjHAddNat, prodStdSimplex.objEquiv_map_apply, CategoryTheory.hoFunctor.isIso_prodComparison_stdSimplex, CategoryTheory.SimplicialThickening.SimplicialCategory.assoc, prodStdSimplex.instFiniteTensorObjObjSimplexCategoryStdSimplexMk, Subcomplex.prod_monotone, ι₀_comp_assoc, ι₀_comp, RelativeMorphism.Homotopy.h₁_assoc, RelativeMorphism.Homotopy.ofEq_h, rightUnitor_hom_app_apply, ι₁_fst, prodStdSimplex.nonDegenerate_iff_injective_objEquiv, RelativeMorphism.Homotopy.h₀, RelativeMorphism.Homotopy.precomp_h, ι₀_fst, associator_hom_app_apply, CategoryTheory.hoFunctor.instIsIsoCatProdComparisonSSetHoFunctorNerve, RelativeMorphism.Homotopy.h₁, Subcomplex.range_tensorHom, RelativeMorphism.Homotopy.postcomp_h, prodStdSimplex.nonDegenerate_iff_strictMono_objEquiv, RelativeMorphism.Homotopy.rel, RelativeMorphism.Homotopy.refl_h, CategoryTheory.SimplicialThickening.functor_id, hasDimensionLE_prod, ι₁_fst_assoc, leftUnitor_hom_app_apply, associator_inv_app_apply, CategoryTheory.hoFunctor.isIso_prodComparison, CategoryTheory.SimplicialThickening.functor_obj_as, CategoryTheory.instIsIsoSSetProdComparisonCatCompNerveFunctorHoFunctorOf, CategoryTheory.SimplicialThickening.SimplicialCategory.id_comp, CategoryTheory.SimplicialThickening.functor_comp, ι₀_app_fst, ι₁_comp_assoc, RelativeMorphism.Homotopy.rel_assoc
|