Documentation Verification Report

Monoidal

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/Monoidal.lean

Statistics

MetricCount
Definitionsprod, instCartesianMonoidalCategory, instMonoidalClosed, instMonoidalTruncation, instCartesianMonoidalCategory, instMonoidalClosed, isTerminalObj₀, unitHomEquiv, ι₀, ι₁
10
Theoremsprod_monotone, prod_obj, range_tensorHom, tensor_map_apply_fst, tensor_map_apply_snd, associator_hom_app_apply, associator_inv_app_apply, instFiniteObjOppositeSimplexCategoryTensorObj, instFiniteTensorUnit, instHasDimensionLETensorUnitOfNatNat, leftUnitor_hom_app_apply, leftUnitor_inv_app_apply, rightUnitor_hom_app_apply, rightUnitor_inv_app_apply, ext₀, ext₀_iff, tensorHom_app_apply, whiskerLeft_app_apply, whiskerRight_app_apply, ι₀_app_fst, ι₀_comp, ι₀_comp_assoc, ι₀_fst, ι₀_fst_assoc, ι₀_snd, ι₀_snd_assoc, ι₁_app_fst, ι₁_comp, ι₁_comp_assoc, ι₁_fst, ι₁_fst_assoc, ι₁_snd, ι₁_snd_assoc
33
Total43

SSet

Definitions

NameCategoryTheorems
instCartesianMonoidalCategory 📖CompOp
68 mathmath: ι₀_snd_assoc, CategoryTheory.SimplicialThickening.SimplicialCategory.comp_id, iSup_subcomplexOfSimplex_prod_eq_top, instHasDimensionLETensorUnitOfNatNat, tensorHom_app_apply, prodStdSimplex.instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat, hasDimensionLT_prod, RelativeMorphism.Homotopy.h₀_assoc, prodStdSimplex.objEquiv_apply_fst, instFiniteTensorUnit, prodStdSimplex.strictMono_orderHomOfSimplex_iff, Subcomplex.ofSimplexProd_eq_range, prodStdSimplex.objEquiv_δ_apply, prodStdSimplex.objEquiv_naturality, instFiniteTensorObj, prodStdSimplex.objEquiv_apply_snd, hoFunctor.unitHomEquiv_eq, instFiniteObjOppositeSimplexCategoryTensorObj, leftUnitor_inv_app_apply, ι₀_fst_assoc, ι₁_comp, whiskerRight_app_apply, rightUnitor_inv_app_apply, ι₀_snd, CategoryTheory.SimplicialThickening.functor_map, ι₁_snd_assoc, instHasDimensionLETensorObjHAddNat, ι₁_app_fst, ι₁_snd, whiskerLeft_app_apply, Subcomplex.prod_obj, instHasDimensionLTTensorObjHAddNat, prodStdSimplex.objEquiv_map_apply, CategoryTheory.hoFunctor.isIso_prodComparison_stdSimplex, CategoryTheory.SimplicialThickening.SimplicialCategory.assoc, prodStdSimplex.instFiniteTensorObjObjSimplexCategoryStdSimplexMk, Subcomplex.prod_monotone, ι₀_comp_assoc, ι₀_comp, RelativeMorphism.Homotopy.h₁_assoc, RelativeMorphism.Homotopy.ofEq_h, rightUnitor_hom_app_apply, ι₁_fst, prodStdSimplex.nonDegenerate_iff_injective_objEquiv, RelativeMorphism.Homotopy.h₀, RelativeMorphism.Homotopy.precomp_h, ι₀_fst, associator_hom_app_apply, CategoryTheory.hoFunctor.instIsIsoCatProdComparisonSSetHoFunctorNerve, RelativeMorphism.Homotopy.h₁, Subcomplex.range_tensorHom, RelativeMorphism.Homotopy.postcomp_h, prodStdSimplex.nonDegenerate_iff_strictMono_objEquiv, RelativeMorphism.Homotopy.rel, RelativeMorphism.Homotopy.refl_h, CategoryTheory.SimplicialThickening.functor_id, hasDimensionLE_prod, ι₁_fst_assoc, leftUnitor_hom_app_apply, associator_inv_app_apply, CategoryTheory.hoFunctor.isIso_prodComparison, CategoryTheory.SimplicialThickening.functor_obj_as, CategoryTheory.instIsIsoSSetProdComparisonCatCompNerveFunctorHoFunctorOf, CategoryTheory.SimplicialThickening.SimplicialCategory.id_comp, CategoryTheory.SimplicialThickening.functor_comp, ι₀_app_fst, ι₁_comp_assoc, RelativeMorphism.Homotopy.rel_assoc
instMonoidalClosed 📖CompOp
unitHomEquiv 📖CompOp
ι₀ 📖CompOp
9 mathmath: ι₀_snd_assoc, RelativeMorphism.Homotopy.h₀_assoc, ι₀_fst_assoc, ι₀_snd, ι₀_comp_assoc, ι₀_comp, RelativeMorphism.Homotopy.h₀, ι₀_fst, ι₀_app_fst
ι₁ 📖CompOp
9 mathmath: ι₁_comp, ι₁_snd_assoc, ι₁_app_fst, ι₁_snd, RelativeMorphism.Homotopy.h₁_assoc, ι₁_fst, RelativeMorphism.Homotopy.h₁, ι₁_fst_assoc, ι₁_comp_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
associator_hom_app_apply 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor.obj
associator_inv_app_apply 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor.obj
instFiniteObjOppositeSimplexCategoryTensorObj 📖mathematicalFinite
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
Finite.instProd
instFiniteTensorUnit 📖mathematicalFinite
CategoryTheory.MonoidalCategoryStruct.tensorUnit
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
finite_of_iso
stdSimplex.instFiniteObjSimplexCategory
instHasDimensionLETensorUnitOfNatNat 📖mathematicalHasDimensionLE
CategoryTheory.MonoidalCategoryStruct.tensorUnit
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
hasDimensionLT_iff_of_iso
stdSimplex.instHasDimensionLEObjSimplexCategoryMk
leftUnitor_hom_app_apply 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Functor.obj
leftUnitor_inv_app_apply 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Functor.obj
rightUnitor_hom_app_apply 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.obj
rightUnitor_inv_app_apply 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Functor.obj
tensorHom_app_apply 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Functor.obj
whiskerLeft_app_apply 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.obj
whiskerRight_app_apply 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.obj
ι₀_app_fst 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
largeCategory
stdSimplex
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
ι₀
ι₀_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
ι₀
CategoryTheory.MonoidalCategoryStruct.whiskerRight
ι₀_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
ι₀
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι₀_comp
ι₀_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
ι₀
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.CategoryStruct.id
ι₀_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
ι₀
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ι₀_fst
ι₀_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
ι₀
CategoryTheory.SemiCartesianMonoidalCategory.snd
const
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
stdSimplex.obj₀Equiv
ι₀_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
ι₀
CategoryTheory.SemiCartesianMonoidalCategory.snd
const
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
stdSimplex.obj₀Equiv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι₀_snd
ι₁_app_fst 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
largeCategory
stdSimplex
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
ι₁
ι₁_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
ι₁
CategoryTheory.MonoidalCategoryStruct.whiskerRight
ι₁_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
ι₁
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι₁_comp
ι₁_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
ι₁
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.CategoryStruct.id
ι₁_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
ι₁
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ι₁_fst
ι₁_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
ι₁
CategoryTheory.SemiCartesianMonoidalCategory.snd
const
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
stdSimplex.obj₀Equiv
ι₁_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
ι₁
CategoryTheory.SemiCartesianMonoidalCategory.snd
const
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
stdSimplex.obj₀Equiv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι₁_snd

SSet.Subcomplex

Definitions

NameCategoryTheorems
prod 📖CompOp
5 mathmath: SSet.iSup_subcomplexOfSimplex_prod_eq_top, ofSimplexProd_eq_range, prod_obj, prod_monotone, range_tensorHom

Theorems

NameKindAssumesProvesValidatesDepends On
prod_monotone 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
prod
prod_obj 📖mathematicalCategoryTheory.Subfunctor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
prod
Set.prod
CategoryTheory.Functor.obj
CategoryTheory.types
range_tensorHom 📖mathematicalrange
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorHom
prod
CategoryTheory.Subfunctor.ext
Set.ext
Prod.eq_iff_fst_eq_snd_eq

SSet.Truncated

Definitions

NameCategoryTheorems
instCartesianMonoidalCategory 📖CompOp
36 mathmath: HomotopyCategory.BinaryProduct.iso_inv_toFunctor, tensor_map_apply_snd, HomotopyCategory.BinaryProduct.inverse_map_mkHom_id_homMk, Edge.map_fst, HomotopyCategory.BinaryProduct.functorCompInverseIso_inv_app, HomotopyCategory.BinaryProduct.functorCompInverseIso_hom_app, HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_fst, Edge.CompStruct.tensor_simplex_snd, HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_snd, Edge.id_tensor_id, HomotopyCategory.BinaryProduct.left_unitality, Edge.CompStruct.tensor_simplex_fst, HomotopyCategory.BinaryProduct.inverseCompFunctorIso_inv_app, Edge.map_associator_hom, HomotopyCategory.BinaryProduct.iso_hom_toFunctor, Edge.map_whiskerLeft, HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_id, HomotopyCategory.BinaryProduct.mapHomotopyCategory_prod_id_comp_inverse, Edge.map_snd, HomotopyCategory.BinaryProduct.functor_comp_inverse, HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_homMk, HomotopyCategory.BinaryProduct.inverse_comp_functor, Edge.map_tensorHom, HomotopyCategory.BinaryProduct.associativity'Iso_hom_app, tensor_map_apply_fst, HomotopyCategory.BinaryProduct.functor_obj, Edge.tensor_edge, HomotopyCategory.BinaryProduct.square, HomotopyCategory.BinaryProduct.inverseCompFunctorIso_hom_app, HomotopyCategory.BinaryProduct.associativity, HomotopyCategory.BinaryProduct.right_unitality, HomotopyCategory.BinaryProduct.associativityIso_hom_app, Edge.map_whiskerRight, HomotopyCategory.BinaryProduct.functor_map, HomotopyCategory.BinaryProduct.id_prod_mapHomotopyCategory_comp_inverse, HomotopyCategory.BinaryProduct.inverse_obj
instMonoidalClosed 📖CompOp
instMonoidalTruncation 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
tensor_map_apply_fst 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
tensor_map_apply_snd 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
CategoryTheory.Functor.map
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory

SSet.stdSimplex

Definitions

NameCategoryTheorems
isTerminalObj₀ 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ext₀ 📖CategoryTheory.Limits.IsTerminal.hom_ext
ext₀_iff 📖ext₀

---

← Back to Index