Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Monoidal

The monoidal category structure on simplicial sets #

This file defines an instance of chosen finite products for the category SSet. It follows from the fact the SSet if a category of functors to the category of types and that the category of types have chosen finite products. As a result, we obtain a monoidal category structure on SSet.

The bijection (𝟙_ SSet ⟶ K) ≃ K _⦋0⦌.

Equations
    Instances For

      The external product of subcomplexes of simplicial sets.

      Equations
        Instances For
          @[simp]
          theorem SSet.Subcomplex.prod_obj {X Y : SSet} (A : X.Subcomplex) (B : Y.Subcomplex) (Δ : SimplexCategoryᵒᵖ) :
          (A.prod B).obj Δ = (A.obj Δ).prod (B.obj Δ)
          theorem SSet.Subcomplex.prod_monotone {X Y : SSet} {A₁ A₂ : X.Subcomplex} (hX : A₁ A₂) {B₁ B₂ : Y.Subcomplex} (hY : B₁ B₂) :
          A₁.prod B₁ A₂.prod B₂
          theorem SSet.Subcomplex.range_tensorHom {X₁ X₂ Y₁ Y₂ : SSet} (f₁ : X₁ Y₁) (f₂ : X₂ Y₂) :

          The inclusion X ⟶ X ⊗ Δ[1] which is 0 on the second factor.

          Equations
            Instances For
              @[simp]
              theorem SSet.ι₀_app_fst {X : SSet} {m : SimplexCategoryᵒᵖ} (x : X.obj m) :
              (ι₀.app m x).1 = x

              The inclusion X ⟶ X ⊗ Δ[1] which is 1 on the second factor.

              Equations
                Instances For
                  @[simp]
                  theorem SSet.ι₁_app_fst {X : SSet} {m : SimplexCategoryᵒᵖ} (x : X.obj m) :
                  (ι₁.app m x).1 = x