Documentation Verification Report

RelativeMorphism

๐Ÿ“ Source: Mathlib/AlgebraicTopology/SimplicialSet/RelativeMorphism.lean

Statistics

MetricCount
DefinitionsRelativeMorphism, h, ofEq, postcomp, precomp, refl, HomotopyClass, postcomp, precomp, comp, const, homotopyClass, map, ofSimplexโ‚€
14
Theoremseq, ext, ext_iff, hโ‚€, hโ‚€_assoc, hโ‚, hโ‚_assoc, ofEq_h, postcomp_h, precomp_h, refl_h, rel, rel_assoc, eq_homotopyClass, comm, comm_assoc, comp_map, const_map, ext, ext_iff, image_le, le_preimage, map_coe, map_eq_of_mem, ofSimplexโ‚€_map, postcomp_homotopyClass, precomp_homotopyClass
27
Total41

SSet

Definitions

NameCategoryTheorems
RelativeMorphism ๐Ÿ“–CompDataโ€”

SSet.RelativeMorphism

Definitions

NameCategoryTheorems
HomotopyClass ๐Ÿ“–CompOpโ€”
comp ๐Ÿ“–CompOp
5 mathmath: precomp_homotopyClass, postcomp_homotopyClass, Homotopy.precomp_h, Homotopy.postcomp_h, comp_map
const ๐Ÿ“–CompOp
1 mathmath: const_map
homotopyClass ๐Ÿ“–CompOp
4 mathmath: HomotopyClass.eq_homotopyClass, precomp_homotopyClass, postcomp_homotopyClass, Homotopy.eq
map ๐Ÿ“–CompOp
28 mathmath: image_le, Homotopy.hโ‚€_assoc, ext_iff, SSet.PtSimplex.RelStruct.ฮด_castSucc_map, SSet.PtSimplex.RelStruct.ฮด_castSucc_map_assoc, SSet.PtSimplex.MulStruct.ฮด_succ_succ_map_assoc, ofSimplexโ‚€_map, SSet.PtSimplex.MulStruct.ฮด_succ_succ_map, le_preimage, map_eq_of_mem, SSet.PtSimplex.MulStruct.ฮด_succ_castSucc_map, comm_assoc, comm, Homotopy.hโ‚_assoc, Homotopy.ofEq_h, SSet.PtSimplex.MulStruct.ฮด_castSucc_castSucc_map_assoc, Homotopy.hโ‚€, Homotopy.precomp_h, Homotopy.hโ‚, Homotopy.postcomp_h, const_map, Homotopy.refl_h, SSet.PtSimplex.RelStruct.ฮด_succ_map, comp_map, map_coe, SSet.PtSimplex.MulStruct.ฮด_succ_castSucc_map_assoc, SSet.PtSimplex.RelStruct.ฮด_succ_map_assoc, SSet.PtSimplex.MulStruct.ฮด_castSucc_castSucc_map
ofSimplexโ‚€ ๐Ÿ“–CompOp
1 mathmath: ofSimplexโ‚€_map

Theorems

NameKindAssumesProvesValidatesDepends On
comm ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
SSet.Subcomplex.toSSet
SSet.Subcomplex.ฮน
map
โ€”โ€”
comm_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
SSet.Subcomplex.toSSet
SSet.Subcomplex.ฮน
map
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
comp_map ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
SSet.Subcomplex.toSSet
map
comp
โ€”โ€”
const_map ๐Ÿ“–mathematicalโ€”map
SSet.Subcomplex.ofSimplex
const
SSet.const
โ€”โ€”
ext ๐Ÿ“–โ€”mapโ€”โ€”โ€”
ext_iff ๐Ÿ“–mathematicalโ€”mapโ€”ext
image_le ๐Ÿ“–mathematicalโ€”SSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
SSet.Subcomplex.image
map
โ€”map_coe
le_preimage ๐Ÿ“–mathematicalโ€”SSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
SSet.Subcomplex.preimage
map
โ€”image_le
map_coe ๐Ÿ“–mathematicalโ€”CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
map
CategoryTheory.Functor.obj
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.Subcomplex.toSSet
โ€”map_eq_of_mem
map_eq_of_mem ๐Ÿ“–mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.NatTrans.app
map
SSet.Subcomplex.toSSet
โ€”CategoryTheory.congr_app
comm
ofSimplexโ‚€_map ๐Ÿ“–mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
map
SSet.Subcomplex.ofSimplex
SSet.const
SSet.Subcomplex.toSSet
CategoryTheory.Functor.obj
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.Subcomplex.mem_ofSimplex_obj
ofSimplexโ‚€
โ€”SSet.Subcomplex.mem_ofSimplex_obj
postcomp_homotopyClass ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
SSet.Subcomplex.toSSet
HomotopyClass.postcomp
homotopyClass
comp
โ€”โ€”
precomp_homotopyClass ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
SSet.Subcomplex.toSSet
HomotopyClass.precomp
homotopyClass
comp
โ€”โ€”

SSet.RelativeMorphism.Homotopy

Definitions

NameCategoryTheorems
h ๐Ÿ“–CompOp
11 mathmath: hโ‚€_assoc, ext_iff, hโ‚_assoc, ofEq_h, hโ‚€, precomp_h, hโ‚, postcomp_h, rel, refl_h, rel_assoc
ofEq ๐Ÿ“–CompOp
1 mathmath: ofEq_h
postcomp ๐Ÿ“–CompOp
1 mathmath: postcomp_h
precomp ๐Ÿ“–CompOp
1 mathmath: precomp_h
refl ๐Ÿ“–CompOp
1 mathmath: refl_h

Theorems

NameKindAssumesProvesValidatesDepends On
eq ๐Ÿ“–mathematicalโ€”SSet.RelativeMorphism.homotopyClassโ€”โ€”
ext ๐Ÿ“–โ€”hโ€”โ€”โ€”
ext_iff ๐Ÿ“–mathematicalโ€”hโ€”ext
hโ‚€ ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.ฮนโ‚€
h
SSet.RelativeMorphism.map
โ€”โ€”
hโ‚€_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.ฮนโ‚€
h
SSet.RelativeMorphism.map
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hโ‚€
hโ‚ ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.ฮนโ‚
h
SSet.RelativeMorphism.map
โ€”โ€”
hโ‚_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.ฮนโ‚
h
SSet.RelativeMorphism.map
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hโ‚
ofEq_h ๐Ÿ“–mathematicalโ€”h
ofEq
CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.SemiCartesianMonoidalCategory.fst
SSet.RelativeMorphism.map
โ€”โ€”
postcomp_h ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
SSet.Subcomplex.toSSet
h
SSet.RelativeMorphism.comp
postcomp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.RelativeMorphism.map
โ€”โ€”
precomp_h ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
SSet.Subcomplex.toSSet
h
SSet.RelativeMorphism.comp
precomp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.MonoidalCategoryStruct.whiskerRight
SSet.RelativeMorphism.map
โ€”โ€”
refl_h ๐Ÿ“–mathematicalโ€”h
refl
CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.SemiCartesianMonoidalCategory.fst
SSet.RelativeMorphism.map
โ€”โ€”
rel ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
SSet.Subcomplex.toSSet
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.MonoidalCategoryStruct.whiskerRight
SSet.Subcomplex.ฮน
h
CategoryTheory.SemiCartesianMonoidalCategory.fst
โ€”โ€”
rel_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
SSet.Subcomplex.toSSet
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.MonoidalCategoryStruct.whiskerRight
SSet.Subcomplex.ฮน
h
CategoryTheory.SemiCartesianMonoidalCategory.fst
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rel

SSet.RelativeMorphism.HomotopyClass

Definitions

NameCategoryTheorems
postcomp ๐Ÿ“–CompOp
1 mathmath: SSet.RelativeMorphism.postcomp_homotopyClass
precomp ๐Ÿ“–CompOp
1 mathmath: SSet.RelativeMorphism.precomp_homotopyClass

Theorems

NameKindAssumesProvesValidatesDepends On
eq_homotopyClass ๐Ÿ“–mathematicalโ€”SSet.RelativeMorphism.homotopyClassโ€”Quot.mk_surjective

---

โ† Back to Index