Documentation

Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism

Relative morphisms of simplicial sets #

Given two simplicial sets X and Y, and subcomplexes A of X, and B of Y, we introduce a type RelativeMorphism A B φ of morphisms X ⟶ Y which induce a given morphism of simplicial sets A ⟶ B. We define homotopies between these relative morphisms and introduce the quotient type of homotopy classes.

structure SSet.RelativeMorphism {X Y : SSet} (A : X.Subcomplex) (B : Y.Subcomplex) (φ : A.toSSet B.toSSet) :

Given a morphism of simplicial sets φ : A ⟶ B with A : X.Subcomplex and B : Y.Subcomplex, this is the type of morphisms X ⟶ Y which induce φ.

Instances For
    theorem SSet.RelativeMorphism.ext {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {x y : RelativeMorphism A B φ} (map : x.map = y.map) :
    x = y
    theorem SSet.RelativeMorphism.ext_iff {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {x y : RelativeMorphism A B φ} :
    x = y x.map = y.map

    The constant relative morphism when the given subcomplex of the target is generated by a 0-simplex.

    Equations
      Instances For

        Given a morphism f : X ⟶ Y of simplicial set which sends a 0-simplex x to y, this is the pointed morphism (X, x) ⟶ (Y, y).

        Equations
          Instances For
            theorem SSet.RelativeMorphism.map_eq_of_mem {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} (f : RelativeMorphism A B φ) {n : SimplexCategoryᵒᵖ} (a : X.obj n) (ha : a A.obj n) :
            f.map.app n a = (φ.app n a, ha)
            @[simp]
            theorem SSet.RelativeMorphism.map_coe {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} (f : RelativeMorphism A B φ) {n : SimplexCategoryᵒᵖ} (a : (A.obj n)) :
            f.map.app n a = (φ.app n a)
            theorem SSet.RelativeMorphism.Homotopy.ext_iff {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {f g : RelativeMorphism A B φ} {x y : f.Homotopy g} :
            x = y x.h = y.h
            theorem SSet.RelativeMorphism.Homotopy.ext {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {f g : RelativeMorphism A B φ} {x y : f.Homotopy g} (h : x.h = y.h) :
            x = y
            noncomputable def SSet.RelativeMorphism.Homotopy.ofEq {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {f g : RelativeMorphism A B φ} (h : f = g) :

            Two equal relative morphisms are homotopic.

            Equations
              Instances For
                noncomputable def SSet.RelativeMorphism.Homotopy.refl {X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} (f : RelativeMorphism A B φ) :

                A relative morphism is homotopic to itself.

                Equations
                  Instances For

                    The type of homotopy classes of relative morphisms.

                    Equations
                      Instances For

                        The homotopy class of a relative morphism.

                        Equations
                          Instances For
                            def SSet.RelativeMorphism.comp {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} (f : RelativeMorphism A B φ) {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :

                            The composition of relative morphisms.

                            Equations
                              Instances For
                                @[simp]
                                theorem SSet.RelativeMorphism.comp_map {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} (f : RelativeMorphism A B φ) {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                                noncomputable def SSet.RelativeMorphism.Homotopy.postcomp {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {f g : RelativeMorphism A B φ} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (h : f.Homotopy g) (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                                (f.comp f' fac).Homotopy (g.comp f' fac)

                                The postcomposition of an homotopy with a relative morphism.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem SSet.RelativeMorphism.Homotopy.postcomp_h {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {f g : RelativeMorphism A B φ} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (h : f.Homotopy g) (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                                    noncomputable def SSet.RelativeMorphism.Homotopy.precomp {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} {f' g' : RelativeMorphism B C ψ} (h : f'.Homotopy g') (f : RelativeMorphism A B φ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                                    (f.comp f' fac).Homotopy (f.comp g' fac)

                                    The precomposition of an homotopy with a relative morphism.

                                    Equations
                                      Instances For
                                        def SSet.RelativeMorphism.HomotopyClass.postcomp {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (h : HomotopyClass A B φ) (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                                        HomotopyClass A C φψ

                                        The postcomposition of an homotopy class by a relative morphism.

                                        Equations
                                          Instances For
                                            @[simp]
                                            theorem SSet.RelativeMorphism.postcomp_homotopyClass {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (f : RelativeMorphism A B φ) (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                                            noncomputable def SSet.RelativeMorphism.HomotopyClass.precomp {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (h : HomotopyClass B C ψ) (f' : RelativeMorphism A B φ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :
                                            HomotopyClass A C φψ

                                            The precomposition of an homotopy class with a relative morphism.

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem SSet.RelativeMorphism.precomp_homotopyClass {X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet B.toSSet} {C : Z.Subcomplex} {ψ : B.toSSet C.toSSet} (f : RelativeMorphism A B φ) (f' : RelativeMorphism B C ψ) {φψ : A.toSSet C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) :