Documentation Verification Report

StdSimplex

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/StdSimplex.lean

Statistics

MetricCount
DefinitionsstdSimplex, S1, instInhabited, instInhabitedTruncated, stdSimplex, asOrderHom, const, edge, face, facePairIso, faceRepresentableBy, faceSingletonComplIso, faceSingletonIso, finSuccAboveOrderIsoFinset, instDecidableEqHomObjSimplexCategoryOfOppositeOp, instDecidableEqObjOppositeSimplexCategory, instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat, isoNerve, isoOfRepresentableBy, nonDegenerateEquiv, objEquiv, objMk, obj₀Equiv, triangle, yonedaEquiv, «termΔ[_]»
26
TheoremsstdSimplex_map_left, stdSimplex_map_right, stdSimplex_obj_hom_app, stdSimplex_obj_left, stdSimplex_obj_right, range_eq_ofSimplex, yonedaEquiv_coe, coe_edge_down_toOrderHom, coe_triangle_down_toOrderHom, const_down_toOrderHom, ext, ext_iff, faceSingletonComplIso_hom_ι, faceSingletonComplIso_hom_ι_assoc, faceSingletonIso_one_hom_comp_ι_eq_δ, faceSingletonIso_one_hom_comp_ι_eq_δ_assoc, faceSingletonIso_zero_hom_comp_ι_eq_δ, faceSingletonIso_zero_hom_comp_ι_eq_δ_assoc, face_eq_ofSimplex, face_inter_face, face_le_face_iff, face_obj, face_singleton_compl, instFiniteObjOppositeSimplexCategory, instFiniteObjSimplexCategory, instFiniteToSSetOfSimplex, instHasDimensionLEObjSimplexCategoryMk, isoNerve_hom_app_apply, isoNerve_inv_app_apply, map_apply, map_id, mem_face_iff, mem_nonDegenerate_iff_mono, mem_nonDegenerate_iff_strictMono, monotone_apply, nonDegenerateEquiv_apply_apply, nonDegenerateEquiv_symm_apply_coe, objEquiv_symm_apply, objEquiv_symm_comp, objEquiv_symm_mem_nonDegenerate_iff_mono, objEquiv_toOrderHom_apply, objMk_apply, obj₀Equiv_apply, obj₀Equiv_symm_apply, obj₀Equiv_symm_mem_face_iff, ofSimplex_yonedaEquiv_δ, range_δ, yonedaEquiv_map, yonedaEquiv_comp
49
Total75

SSet

Definitions

NameCategoryTheorems
S1 📖CompOp
instInhabited 📖CompOp
instInhabitedTruncated 📖CompOp
stdSimplex 📖CompOp
133 mathmath: stdSimplex.mem_nonDegenerate_iff_strictMono, PtSimplex.RelStruct.δ_map_of_lt, ι₀_snd_assoc, instIsDiscreteHomotopyCategoryObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk, horn.faceSingletonComplIso_inv_ι_assoc, stdSimplex.faceSingletonIso_zero_hom_comp_ι_eq_δ, stdSimplex.obj₀Equiv_symm_apply, Subcomplex.range_eq_ofSimplex, PtSimplex.MulStruct.δ_map_of_gt, prodStdSimplex.instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat, horn.yonedaEquiv_ι, Finite.instIsFinitelyPresentableObjSimplexCategoryStdSimplex, instIsLeftKanExtensionSimplexCategoryTopCatSSetToTopInvFunctorToTopSimplex, prodStdSimplex.orderHomOfSimplex_coe, RelativeMorphism.Homotopy.h₀_assoc, prodStdSimplex.objEquiv_apply_fst, stdSimplex.map_id, horn₂₂.sq, stdSimplex.ext_iff, prodStdSimplex.strictMono_orderHomOfSimplex_iff, Subcomplex.ofSimplexProd_eq_range, stdSimplex.face_eq_ofSimplex, PtSimplex.RelStruct.δ_castSucc_map, stdSimplex.obj₀Equiv_apply, prodStdSimplex.objEquiv_δ_apply, horn.faceSingletonComplIso_inv_ι, prodStdSimplex.objEquiv_naturality, modelCategoryQuillen.instHasLiftingPropertyιHornHAddNatOfNatOfFibration, stdSimplex.spineId_arrow_apply_zero, stdSimplex.range_δ, PtSimplex.RelStruct.δ_castSucc_map_assoc, PtSimplex.MulStruct.δ_succ_succ_map_assoc, Augmented.stdSimplex_map_right, PtSimplex.MulStruct.δ_succ_succ_map, prodStdSimplex.objEquiv_apply_snd, Augmented.stdSimplex_obj_left, stdSimplex.faceSingletonIso_zero_hom_comp_ι_eq_δ_assoc, horn.spineId_map_hornInclusion, horn_obj, ι₀_fst_assoc, ι₁_comp, Subcomplex.yonedaEquiv_coe, stdSimplex.face_obj, stdSimplex.nonDegenerateEquiv_apply_apply, modelCategoryQuillen.horn_ι_mem_J, stdSimplex.map_apply, ι₀_snd, PtSimplex.MulStruct.δ_succ_castSucc_map, horn₂₀.sq, stdSimplex.mem_face_iff, stdSimplex.faceSingletonIso_one_hom_comp_ι_eq_δ, ι₁_snd_assoc, horn.edge_coe, stdSimplex.isoNerve_hom_app_apply, stdSimplex.faceSingletonComplIso_hom_ι, ι₁_app_fst, ι₁_snd, stdSimplex.instFiniteObjOppositeSimplexCategory, face_le_horn, PtSimplex.MulStruct.δ_map_of_lt, stdSimplex.instHasDimensionLEObjSimplexCategoryMk, stdSimplex.monotone_apply, horn.faceι_ι, prodStdSimplex.objEquiv_map_apply, stdSimplex.objEquiv_symm_mem_nonDegenerate_iff_mono, CategoryTheory.hoFunctor.isIso_prodComparison_stdSimplex, horn.edge₃_coe_down, horn₂₁.isPushout, horn_eq_iSup, stdSimplex.obj₀Equiv_symm_mem_face_iff, prodStdSimplex.instFiniteTensorObjObjSimplexCategoryStdSimplexMk, stdSimplex.objEquiv_symm_comp, ι₀_comp_assoc, ι₀_comp, Augmented.stdSimplex_obj_hom_app, horn.faceι_ι_assoc, RelativeMorphism.Homotopy.h₁_assoc, stdSimplex.yonedaEquiv_map, RelativeMorphism.Homotopy.ofEq_h, horn_obj_zero, horn.spineId_vertex_coe, horn.multicoequalizerDiagram, horn.spineId_arrow_coe, stdSimplex.objEquiv_toOrderHom_apply, ι₁_fst, PtSimplex.MulStruct.δ_castSucc_castSucc_map_assoc, horn₂₀.isPushout, stdSimplex.ofSimplex_yonedaEquiv_δ, prodStdSimplex.nonDegenerate_iff_injective_objEquiv, Quasicategory.hornFilling, stdSimplex.instFiniteObjSimplexCategory, stdSimplex.objMk_apply, RelativeMorphism.Homotopy.h₀, modelCategoryQuillen.boundary_ι_mem_I, Augmented.stdSimplex_map_left, stdSimplex.faceSingletonComplIso_hom_ι_assoc, RelativeMorphism.Homotopy.precomp_h, ι₀_fst, boundary_eq_iSup, RelativeMorphism.Homotopy.h₁, stdSimplex.spineId_vertex, RelativeMorphism.Homotopy.postcomp_h, stdSimplex.face_inter_face, stdSimplex.mem_nonDegenerate_iff_mono, horn₂₂.isPushout, prodStdSimplex.nonDegenerate_iff_strictMono_objEquiv, yonedaEquiv_comp, stdSimplex.spineId_arrow_apply_one, Quasicategory.hornFilling', RelativeMorphism.Homotopy.rel, horn.primitiveEdge_coe_down, stdSimplex.faceSingletonIso_one_hom_comp_ι_eq_δ_assoc, stdSimplex.face_le_face_iff, RelativeMorphism.Homotopy.refl_h, PtSimplex.RelStruct.δ_succ_map, ι₁_fst_assoc, horn.ι_ι_assoc, stdSimplex.objEquiv_symm_apply, KanComplex.hornFilling, PtSimplex.RelStruct.δ_map_of_gt, stdSimplex.nonDegenerateEquiv_symm_apply_coe, horn.ι_ι, PtSimplex.MulStruct.δ_succ_castSucc_map_assoc, horn.const_val_apply, horn₂₁.sq, horn.primitiveTriangle_coe, stdSimplex.face_singleton_compl, ι₀_app_fst, ι₁_comp_assoc, PtSimplex.RelStruct.δ_succ_map_assoc, stdSimplex.isoNerve_inv_app_apply, PtSimplex.MulStruct.δ_castSucc_castSucc_map, RelativeMorphism.Homotopy.rel_assoc
yonedaEquiv 📖CompOp
7 mathmath: Subcomplex.range_eq_ofSimplex, horn.yonedaEquiv_ι, Subcomplex.ofSimplexProd_eq_range, Subcomplex.yonedaEquiv_coe, stdSimplex.yonedaEquiv_map, stdSimplex.ofSimplex_yonedaEquiv_δ, yonedaEquiv_comp

Theorems

NameKindAssumesProvesValidatesDepends On
yonedaEquiv_comp 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
SSet
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app

SSet.Augmented

Definitions

NameCategoryTheorems
stdSimplex 📖CompOp
6 mathmath: stdSimplex_map_right, stdSimplex_obj_left, StandardSimplex.nonempty_extraDegeneracy_stdSimplex, stdSimplex_obj_right, stdSimplex_obj_hom_app, stdSimplex_map_left

Theorems

NameKindAssumesProvesValidatesDepends On
stdSimplex_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.SimplicialObject
CategoryTheory.types
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
CategoryTheory.Limits.terminal
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.terminal.from
CategoryTheory.Functor.map
SSet.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
stdSimplex
stdSimplex_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.types
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
CategoryTheory.Limits.terminal
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.terminal.from
CategoryTheory.Functor.map
SSet.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
stdSimplex
CategoryTheory.Comma.right
stdSimplex_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
SSet
SSet.largeCategory
SSet.stdSimplex
CategoryTheory.SimplicialObject.const
CategoryTheory.Limits.terminal
CategoryTheory.Comma.hom
SSet.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
stdSimplex
CategoryTheory.Limits.terminal.from
stdSimplex_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.types
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
stdSimplex
SSet
SSet.largeCategory
SSet.stdSimplex
stdSimplex_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.SimplicialObject
CategoryTheory.types
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
stdSimplex
CategoryTheory.Limits.terminal

SSet.Subcomplex

Theorems

NameKindAssumesProvesValidatesDepends On
range_eq_ofSimplex 📖mathematicalrange
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
ofSimplex
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
SSet.yonedaEquiv
CategoryTheory.Subfunctor.range_eq_ofSection'
yonedaEquiv_coe 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
DFunLike.coe
Equiv
Quiver.Hom
SSet
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
SSet.stdSimplex
CategoryTheory.Subfunctor.toFunctor
Set.Elem
toSSet
EquivLike.toFunLike
Equiv.instEquivLike
SSet.yonedaEquiv
CategoryTheory.CategoryStruct.comp
ι

SSet.stdSimplex

Definitions

NameCategoryTheorems
asOrderHom 📖CompOp
1 mathmath: SSet.horn_obj
const 📖CompOp
3 mathmath: obj₀Equiv_symm_apply, const_down_toOrderHom, SSet.horn.spineId_vertex_coe
edge 📖CompOp
2 mathmath: coe_edge_down_toOrderHom, SSet.horn.edge_coe
face 📖CompOp
40 mathmath: SSet.horn₃₁.desc.multicofork_π_two, SSet.horn.faceSingletonComplIso_inv_ι_assoc, faceSingletonIso_zero_hom_comp_ι_eq_δ, SSet.horn₃₂.desc.multicofork_π_one, SSet.horn₂₂.sq, face_eq_ofSimplex, SSet.horn₃₁.desc.multicofork_pt, SSet.horn.faceSingletonComplIso_inv_ι, range_δ, faceSingletonIso_zero_hom_comp_ι_eq_δ_assoc, SSet.horn₃₁.desc.multicofork_π_two_assoc, SSet.horn₃₁.desc.multicofork_π_zero_assoc, face_obj, SSet.horn₂₀.sq, mem_face_iff, faceSingletonIso_one_hom_comp_ι_eq_δ, faceSingletonComplIso_hom_ι, SSet.face_le_horn, SSet.horn.faceι_ι, SSet.horn_eq_iSup, obj₀Equiv_symm_mem_face_iff, SSet.horn₃₂.desc.multicofork_π_zero_assoc, SSet.horn.faceι_ι_assoc, SSet.horn.multicoequalizerDiagram, SSet.horn₃₁.desc.multicofork_π_three_assoc, SSet.horn₃₁.desc.multicofork_π_zero, ofSimplex_yonedaEquiv_δ, SSet.horn₃₂.desc.multicofork_π_three, faceSingletonComplIso_hom_ι_assoc, SSet.boundary_eq_iSup, face_inter_face, SSet.horn₃₂.desc.multicofork_pt, faceSingletonIso_one_hom_comp_ι_eq_δ_assoc, face_le_face_iff, SSet.horn₃₂.desc.multicofork_π_zero, SSet.horn₃₂.desc.multicofork_π_three_assoc, SSet.horn₃₂.desc.multicofork_π_one_assoc, SSet.horn₃₁.desc.multicofork_π_three, SSet.horn₂₁.sq, face_singleton_compl
facePairIso 📖CompOp
faceRepresentableBy 📖CompOp
faceSingletonComplIso 📖CompOp
16 mathmath: SSet.horn₃₁.desc.multicofork_π_two, SSet.horn.faceSingletonComplIso_inv_ι_assoc, SSet.horn₃₂.desc.multicofork_π_one, SSet.horn.faceSingletonComplIso_inv_ι, SSet.horn₃₁.desc.multicofork_π_two_assoc, SSet.horn₃₁.desc.multicofork_π_zero_assoc, faceSingletonComplIso_hom_ι, SSet.horn₃₂.desc.multicofork_π_zero_assoc, SSet.horn₃₁.desc.multicofork_π_three_assoc, SSet.horn₃₁.desc.multicofork_π_zero, SSet.horn₃₂.desc.multicofork_π_three, faceSingletonComplIso_hom_ι_assoc, SSet.horn₃₂.desc.multicofork_π_zero, SSet.horn₃₂.desc.multicofork_π_three_assoc, SSet.horn₃₂.desc.multicofork_π_one_assoc, SSet.horn₃₁.desc.multicofork_π_three
faceSingletonIso 📖CompOp
4 mathmath: faceSingletonIso_zero_hom_comp_ι_eq_δ, faceSingletonIso_zero_hom_comp_ι_eq_δ_assoc, faceSingletonIso_one_hom_comp_ι_eq_δ, faceSingletonIso_one_hom_comp_ι_eq_δ_assoc
finSuccAboveOrderIsoFinset 📖CompOp
instDecidableEqHomObjSimplexCategoryOfOppositeOp 📖CompOp
instDecidableEqObjOppositeSimplexCategory 📖CompOp
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat 📖CompOp
17 mathmath: mem_nonDegenerate_iff_strictMono, SSet.prodStdSimplex.orderHomOfSimplex_coe, SSet.prodStdSimplex.objEquiv_apply_fst, ext_iff, obj₀Equiv_apply, spineId_arrow_apply_zero, SSet.prodStdSimplex.objEquiv_apply_snd, nonDegenerateEquiv_apply_apply, mem_face_iff, isoNerve_hom_app_apply, monotone_apply, objEquiv_toOrderHom_apply, objMk_apply, spineId_arrow_apply_one, objEquiv_symm_apply, SSet.horn.const_val_apply, isoNerve_inv_app_apply
isoNerve 📖CompOp
2 mathmath: isoNerve_hom_app_apply, isoNerve_inv_app_apply
isoOfRepresentableBy 📖CompOp
nonDegenerateEquiv 📖CompOp
2 mathmath: nonDegenerateEquiv_apply_apply, nonDegenerateEquiv_symm_apply_coe
objEquiv 📖CompOp
10 mathmath: face_obj, map_apply, objEquiv_symm_mem_nonDegenerate_iff_mono, objEquiv_symm_comp, yonedaEquiv_map, objEquiv_toOrderHom_apply, mem_nonDegenerate_iff_mono, objEquiv_symm_apply, nonDegenerateEquiv_symm_apply_coe, face_singleton_compl
objMk 📖CompOp
2 mathmath: face_eq_ofSimplex, objMk_apply
obj₀Equiv 📖CompOp
8 mathmath: SSet.ι₀_snd_assoc, obj₀Equiv_symm_apply, obj₀Equiv_apply, SSet.ι₀_snd, SSet.ι₁_snd_assoc, SSet.ι₁_snd, obj₀Equiv_symm_mem_face_iff, spineId_vertex
triangle 📖CompOp
2 mathmath: coe_triangle_down_toOrderHom, SSet.horn.primitiveTriangle_coe

Theorems

NameKindAssumesProvesValidatesDepends On
coe_edge_down_toOrderHom 📖mathematicalDFunLike.coe
OrderHom
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite.op
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
SimplexCategory.Hom.toOrderHom
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
edge
Matrix.vecCons
Matrix.vecEmpty
coe_triangle_down_toOrderHom 📖mathematicalDFunLike.coe
OrderHom
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite.op
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
SimplexCategory.Hom.toOrderHom
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
triangle
Matrix.vecCons
Matrix.vecEmpty
const_down_toOrderHom 📖mathematicalSimplexCategory.Hom.toOrderHom
Opposite.unop
SimplexCategory
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
const
DFunLike.coe
OrderHom
SimplexCategory.len
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instPreorder
OrderHom.instFunLike
OrderHom.const
ext 📖DFunLike.coe
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
DFunLike.ext
ext_iff 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
ext
faceSingletonComplIso_hom_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.Subcomplex.toSSet
face
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
CategoryTheory.Iso.hom
faceSingletonComplIso
SSet.Subcomplex.ι
CategoryTheory.CosimplicialObject.δ
faceSingletonComplIso_hom_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.Subcomplex.toSSet
face
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
CategoryTheory.Iso.hom
faceSingletonComplIso
SSet.Subcomplex.ι
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
faceSingletonComplIso_hom_ι
faceSingletonIso_one_hom_comp_ι_eq_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.Subcomplex.toSSet
face
Finset
Finset.instSingleton
CategoryTheory.Iso.hom
faceSingletonIso
SSet.Subcomplex.ι
CategoryTheory.CosimplicialObject.δ
faceSingletonIso_one_hom_comp_ι_eq_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.Subcomplex.toSSet
face
Finset
Finset.instSingleton
CategoryTheory.Iso.hom
faceSingletonIso
SSet.Subcomplex.ι
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
faceSingletonIso_one_hom_comp_ι_eq_δ
faceSingletonIso_zero_hom_comp_ι_eq_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.Subcomplex.toSSet
face
Finset
Finset.instSingleton
CategoryTheory.Iso.hom
faceSingletonIso
SSet.Subcomplex.ι
CategoryTheory.CosimplicialObject.δ
faceSingletonIso_zero_hom_comp_ι_eq_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.Subcomplex.toSSet
face
Finset
Finset.instSingleton
CategoryTheory.Iso.hom
faceSingletonIso
SSet.Subcomplex.ι
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
faceSingletonIso_zero_hom_comp_ι_eq_δ
face_eq_ofSimplex 📖mathematicalface
SSet.Subcomplex.ofSimplex
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
objMk
Opposite.op
OrderHom.comp
SimplexCategory.len
Opposite.unop
Finset
SetLike.instMembership
Finset.instSetLike
PartialOrder.toPreorder
Fin.instPartialOrder
Subtype.preorder
OrderHom.Subtype.val
OrderEmbedding.toOrderHom
OrderIso.toOrderEmbedding
le_antisymm
mem_face_iff
OrderHom.monotone
ext
OrderIso.apply_symm_apply
face_inter_face 📖mathematicalSSet.Subcomplex
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
face
Finset
Finset.instLattice
CategoryTheory.Subfunctor.ext
Set.ext
face_le_face_iff 📖mathematicalSSet.Subcomplex
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
CategoryTheory.Category.opposite
face
Finset
Finset.partialOrder
obj₀Equiv_symm_mem_face_iff
LE.le.trans
face_obj 📖mathematicalCategoryTheory.Subfunctor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.stdSimplex
face
setOf
CategoryTheory.types
Finset
SimplexCategory.len
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
Finset.image
Opposite.unop
DFunLike.coe
OrderHom
Fin.instPartialOrder
OrderHom.instFunLike
SimplexCategory.Hom.toOrderHom
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
Top.top
BooleanAlgebra.toTop
Finset.booleanAlgebra
SimplexCategory.instFintypeToTypeOrderHomFinHAddNatLenOfNat
face_singleton_compl 📖mathematicalface
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
SSet.Subcomplex.ofSimplex
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
Opposite.op
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
objEquiv
SimplexCategory.δ
face_eq_ofSimplex
instFiniteObjOppositeSimplexCategory 📖mathematicalFinite
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Equiv.finite_iff
SimplexCategory.instFiniteHom
instFiniteObjSimplexCategory 📖mathematicalSSet.Finite
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
SSet.finite_of_hasDimensionLT
instHasDimensionLEObjSimplexCategoryMk
Subtype.finite
instFiniteObjOppositeSimplexCategory
instFiniteToSSetOfSimplex 📖mathematicalSSet.Finite
SSet.Subcomplex.toSSet
SSet.Subcomplex.ofSimplex
Equiv.surjective
SSet.Subcomplex.range_eq_ofSimplex
SSet.finite_range
instFiniteObjSimplexCategory
instHasDimensionLEObjSimplexCategoryMk 📖mathematicalSSet.HasDimensionLE
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
Set.ext
mem_nonDegenerate_iff_mono
SimplexCategory.len_le_of_mono
isoNerve_hom_app_apply 📖mathematicalCategoryTheory.Functor.obj
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite.op
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
ULift.instPreorder
CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
CategoryTheory.nerve
CategoryTheory.Iso.hom
isoNerve
DFunLike.coe
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
isoNerve_inv_app_apply 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
CategoryTheory.NatTrans.app
CategoryTheory.nerve
Preorder.smallCategory
ULift.instPreorder
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Iso.inv
isoNerve
SimplexCategory.len
Opposite.unop
map_apply 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.stdSimplex
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
objEquiv
CategoryTheory.CategoryStruct.comp
Quiver.Hom.unop
map_id 📖mathematicalCategoryTheory.Functor.map
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
OrderHom.id
SimplexCategory.len
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map_id
mem_face_iff 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
face
Finset
Finset.instMembership
DFunLike.coe
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
mem_nonDegenerate_iff_mono 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
Set
Set.instMembership
SSet.nonDegenerate
CategoryTheory.Mono
Opposite.unop
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
mem_nonDegenerate_iff_strictMono
SimplexCategory.mono_iff_injective
StrictMono.injective
Fin.strictMono_iff_lt_succ
LE.le.lt_or_eq
monotone_apply
Fin.castSucc_le_succ
mem_nonDegenerate_iff_strictMono 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
Set
Set.instMembership
SSet.nonDegenerate
StrictMono
PartialOrder.toPreorder
Fin.instPartialOrder
DFunLike.coe
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
SSet.nonDegenerate_iff_of_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
PartialOrder.mem_nerve_nonDegenerate_iff_strictMono
monotone_apply 📖mathematicalMonotone
PartialOrder.toPreorder
Fin.instPartialOrder
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
OrderHom.monotone
nonDegenerateEquiv_apply_apply 📖mathematicalDFunLike.coe
RelEmbedding
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Fin.instLinearOrder
Fin.instPartialOrder
RelEmbedding.instFunLike
Equiv
Set.Elem
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
SSet.nonDegenerate
OrderEmbedding
EquivLike.toFunLike
Equiv.instEquivLike
nonDegenerateEquiv
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
Set
Set.instMembership
nonDegenerateEquiv_symm_apply_coe 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
Set
Set.instMembership
SSet.nonDegenerate
DFunLike.coe
Equiv
OrderEmbedding
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
nonDegenerateEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
objEquiv
OrderEmbedding.toOrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
objEquiv_symm_apply 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
objEquiv
OrderHom
SimplexCategory.len
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
SimplexCategory.Hom.toOrderHom
objEquiv_symm_comp 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
SimplexCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
objEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
objEquiv_symm_mem_nonDegenerate_iff_mono 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
Set
Set.instMembership
SSet.nonDegenerate
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
objEquiv
CategoryTheory.Mono
Equiv.apply_symm_apply
objEquiv_toOrderHom_apply 📖mathematicalDFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
SimplexCategory.Hom.toOrderHom
Equiv
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
objEquiv
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
objMk_apply 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
objMk
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
obj₀Equiv_apply 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
obj₀Equiv
instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
obj₀Equiv_symm_apply 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
obj₀Equiv
const
obj₀Equiv_symm_mem_face_iff 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
SSet
SSet.largeCategory
SSet.stdSimplex
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
face
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
obj₀Equiv
Finset
Finset.instMembership
ofSimplex_yonedaEquiv_δ 📖mathematicalSSet.Subcomplex.ofSimplex
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
SSet.yonedaEquiv
CategoryTheory.CosimplicialObject.δ
face
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
face_eq_ofSimplex
range_δ 📖mathematicalSSet.Subcomplex.range
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
face
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
SSet.Subcomplex.range_eq_ofSimplex
ofSimplex_yonedaEquiv_δ
yonedaEquiv_map 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
SSet
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
SSet.yonedaEquiv
CategoryTheory.Functor.map
Opposite.unop
Equiv.symm
objEquiv
Equiv.injective

Simplicial

Definitions

NameCategoryTheorems
«termΔ[_]» 📖CompOp

---

← Back to Index