Basic
π Source: Mathlib/Analysis/Complex/UnitDisc/Basic.lean
Statistics
Complex
Definitions
Complex.UnitDisc
Definitions
| Name | Category | Theorems |
|---|---|---|
casesOn π | CompOp | β |
conj π | CompOp | β |
im π | CompOp | |
instCoe π | CompOp | β |
instCommSemigroup π | CompOp | β |
instHasDistribNeg π | CompOp | |
instInhabited π | CompOp | β |
instInvolutiveStar π | CompOp | β |
instMulActionCircle π | CompOp | |
instMulActionClosedBall π | CompOp | |
instPowPNat π | CompOp | |
instSemigroupWithZero π | CompOp | 26 mathmath:coe_eq_zero, instIsScalarTower_circle, instSMulCommClass_closedBall_left, conj_neg, coe_neg, im_neg, instSMulCommClass_circle_left, conj_mul, re_neg, instSMulCommClass_closedBall_right, instIsScalarTower_closedBall, instIsCancelMulZero, pow_eq_zero, mk_neg, coe_mul, im_zero, instSMulCommClass_circle_right, mk_zero, mk_eq_zero, re_zero, coe_zero, tendsto_pow_atTop_nhds_zero, star_neg, star_eq_zero, star_zero, instPNatPowAssoc |
instStar π | CompOp | |
instStarMul π | CompOp | β |
mk π | CompOp | β |
re π | CompOp | |
termπ» π | CompOp | β |
Theorems
---