Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/Complex/UnitDisc/Basic.lean

Statistics

MetricCount
DefinitionsUnitDisc, casesOn, conj, im, instCoe, instCommSemigroup, instHasDistribNeg, instInhabited, instInvolutiveStar, instMulActionCircle, instMulActionClosedBall, instPowPNat, instSemigroupWithZero, instStar, instStarMul, mk, re, term𝔻, instTopologicalSpaceUnitDisc
19
TheoremscasesOn_mk, coe_circle_smul, coe_closedBall_smul, coe_conj, coe_eq_zero, coe_inj, coe_injective, coe_injective_iff, coe_mk, coe_mul, coe_ne_neg_one, coe_ne_one, coe_neg, coe_pow, coe_smul_circle, coe_smul_closedBall, coe_star, coe_zero, conj_conj, conj_mul, conj_neg, continuous_coe, continuous_pow, exists, forall, im_coe, im_conj, im_neg, im_star, im_zero, instCanLiftCoeLtRealNormOfNat, instIsCancelMulZero, instIsScalarTower_circle, instIsScalarTower_circle_circle, instIsScalarTower_closedBall, instIsScalarTower_closedBall_closedBall, instPNatPowAssoc, instSMulCommClass_circle_closedBall, instSMulCommClass_circle_left, instSMulCommClass_circle_right, instSMulCommClass_closedBall_circle, instSMulCommClass_closedBall_left, instSMulCommClass_closedBall_right, isEmbedding_coe, mk_coe, mk_eq_zero, mk_inj, mk_neg, mk_zero, normSq_lt_one, norm_lt_one, norm_ne_one, one_add_coe_ne_zero, pow_eq_zero, re_coe, re_conj, re_neg, re_star, re_zero, sq_norm_lt_one, star_eq_zero, star_neg, star_zero, tendsto_pow_atTop_nhds_zero
64
Total83

Complex

Definitions

NameCategoryTheorems
UnitDisc πŸ“–CompOp
47 mathmath: UnitDisc.coe_eq_zero, UnitDisc.instIsScalarTower_circle, UnitDisc.instSMulCommClass_closedBall_circle, UnitDisc.instSMulCommClass_closedBall_left, UnitDisc.conj_neg, UnitDisc.coe_neg, UnitDisc.im_neg, UnitDisc.im_star, UnitDisc.coe_smul_circle, UnitDisc.instIsScalarTower_circle_circle, UnitDisc.coe_conj, UnitDisc.instSMulCommClass_circle_left, UnitDisc.conj_mul, UnitDisc.coe_pow, UnitDisc.isEmbedding_coe, UnitDisc.coe_closedBall_smul, UnitDisc.instCanLiftCoeLtRealNormOfNat, UnitDisc.re_neg, UnitDisc.im_conj, UnitDisc.instSMulCommClass_closedBall_right, UnitDisc.instIsScalarTower_closedBall, UnitDisc.instIsCancelMulZero, UnitDisc.pow_eq_zero, UnitDisc.mk_neg, UnitDisc.coe_mul, UnitDisc.im_zero, UnitDisc.coe_smul_closedBall, UnitDisc.re_star, UnitDisc.instSMulCommClass_circle_right, UnitDisc.mk_zero, UnitDisc.mk_eq_zero, UnitDisc.coe_injective, UnitDisc.continuous_coe, UnitDisc.re_zero, UnitDisc.coe_zero, UnitDisc.re_conj, UnitDisc.conj_conj, UnitDisc.tendsto_pow_atTop_nhds_zero, UnitDisc.instSMulCommClass_circle_closedBall, UnitDisc.star_neg, UnitDisc.star_eq_zero, UnitDisc.star_zero, UnitDisc.instPNatPowAssoc, UnitDisc.coe_star, UnitDisc.instIsScalarTower_closedBall_closedBall, UnitDisc.coe_circle_smul, UnitDisc.continuous_pow
instTopologicalSpaceUnitDisc πŸ“–CompOp
4 mathmath: UnitDisc.isEmbedding_coe, UnitDisc.continuous_coe, UnitDisc.tendsto_pow_atTop_nhds_zero, UnitDisc.continuous_pow

Complex.UnitDisc

Definitions

NameCategoryTheorems
casesOn πŸ“–CompOpβ€”
conj πŸ“–CompOpβ€”
im πŸ“–CompOp
5 mathmath: im_neg, im_star, im_conj, im_zero, im_coe
instCoe πŸ“–CompOpβ€”
instCommSemigroup πŸ“–CompOpβ€”
instHasDistribNeg πŸ“–CompOp
6 mathmath: conj_neg, coe_neg, im_neg, re_neg, mk_neg, star_neg
instInhabited πŸ“–CompOpβ€”
instInvolutiveStar πŸ“–CompOpβ€”
instMulActionCircle πŸ“–CompOp
8 mathmath: instIsScalarTower_circle, instSMulCommClass_closedBall_circle, coe_smul_circle, instIsScalarTower_circle_circle, instSMulCommClass_circle_left, instSMulCommClass_circle_right, instSMulCommClass_circle_closedBall, coe_circle_smul
instMulActionClosedBall πŸ“–CompOp
8 mathmath: instSMulCommClass_closedBall_circle, instSMulCommClass_closedBall_left, coe_closedBall_smul, instSMulCommClass_closedBall_right, instIsScalarTower_closedBall, coe_smul_closedBall, instSMulCommClass_circle_closedBall, instIsScalarTower_closedBall_closedBall
instPowPNat πŸ“–CompOp
5 mathmath: coe_pow, pow_eq_zero, tendsto_pow_atTop_nhds_zero, instPNatPowAssoc, continuous_pow
instSemigroupWithZero πŸ“–CompOp
26 mathmath: coe_eq_zero, instIsScalarTower_circle, instSMulCommClass_closedBall_left, conj_neg, coe_neg, im_neg, instSMulCommClass_circle_left, conj_mul, re_neg, instSMulCommClass_closedBall_right, instIsScalarTower_closedBall, instIsCancelMulZero, pow_eq_zero, mk_neg, coe_mul, im_zero, instSMulCommClass_circle_right, mk_zero, mk_eq_zero, re_zero, coe_zero, tendsto_pow_atTop_nhds_zero, star_neg, star_eq_zero, star_zero, instPNatPowAssoc
instStar πŸ“–CompOp
12 mathmath: conj_neg, im_star, coe_conj, conj_mul, im_conj, re_star, re_conj, conj_conj, star_neg, star_eq_zero, star_zero, coe_star
instStarMul πŸ“–CompOpβ€”
mk πŸ“–CompOpβ€”
re πŸ“–CompOp
5 mathmath: re_neg, re_coe, re_star, re_zero, re_conj
term𝔻 πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
casesOn_mk πŸ“–β€”Real
Real.instLT
Norm.norm
Complex
Complex.instNorm
Real.instOne
β€”β€”β€”
coe_circle_smul πŸ“–mathematicalβ€”coe
Circle
Complex.UnitDisc
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Circle.instCommGroup
MulAction.toSemigroupAction
instMulActionCircle
Complex
Complex.instMul
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
β€”β€”
coe_closedBall_smul πŸ“–mathematicalβ€”coe
Set.Elem
Complex
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
Real
Real.instOne
Complex.UnitDisc
SemigroupAction.toSMul
Monoid.toSemigroup
Metric.unitClosedBall.instMonoid
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
MulAction.toSemigroupAction
instMulActionClosedBall
Complex.instMul
Set
Set.instMembership
β€”NormedDivisionRing.to_normOneClass
coe_conj πŸ“–mathematicalβ€”coe
Star.star
Complex.UnitDisc
instStar
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Complex.instCommSemiring
RingHom.instFunLike
starRingEnd
Complex.instStarRing
β€”coe_star
coe_eq_zero πŸ“–mathematicalβ€”coe
Complex
Complex.instZero
Complex.UnitDisc
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
β€”coe_injective
coe_zero
coe_inj πŸ“–mathematicalβ€”coeβ€”β€”
coe_injective πŸ“–mathematicalβ€”Complex.UnitDisc
Complex
coe
β€”Subtype.coe_injective
coe_injective_iff πŸ“–mathematicalβ€”coeβ€”coe_injective
coe_mk πŸ“–mathematicalReal
Real.instLT
Norm.norm
Complex
Complex.instNorm
Real.instOne
coeβ€”β€”
coe_mul πŸ“–mathematicalβ€”coe
Complex.UnitDisc
MulZeroClass.toMul
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
Complex
Complex.instMul
β€”β€”
coe_ne_neg_one πŸ“–β€”β€”β€”β€”norm_neg
CStarRing.norm_of_mem_unitary
RCLike.instCStarRing
Complex.instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
norm_ne_one
coe_ne_one πŸ“–β€”β€”β€”β€”CStarRing.norm_of_mem_unitary
RCLike.instCStarRing
Complex.instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
norm_ne_one
coe_neg πŸ“–mathematicalβ€”coe
Complex.UnitDisc
NegZeroClass.toNeg
MulZeroClass.negZeroClass
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
instHasDistribNeg
Complex
Complex.instNeg
β€”β€”
coe_pow πŸ“–mathematicalβ€”coe
Complex.UnitDisc
PNat
instPowPNat
Complex
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
PNat.val
β€”β€”
coe_smul_circle πŸ“–mathematicalβ€”coe
Circle
Complex.UnitDisc
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Circle.instCommGroup
MulAction.toSemigroupAction
instMulActionCircle
Complex
Complex.instMul
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
β€”coe_circle_smul
coe_smul_closedBall πŸ“–mathematicalβ€”coe
Set.Elem
Complex
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
Real
Real.instOne
Complex.UnitDisc
SemigroupAction.toSMul
Monoid.toSemigroup
Metric.unitClosedBall.instMonoid
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
MulAction.toSemigroupAction
instMulActionClosedBall
Complex.instMul
Set
Set.instMembership
β€”coe_closedBall_smul
coe_star πŸ“–mathematicalβ€”coe
Star.star
Complex.UnitDisc
instStar
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Complex.instCommSemiring
RingHom.instFunLike
starRingEnd
Complex.instStarRing
β€”β€”
coe_zero πŸ“–mathematicalβ€”coe
Complex.UnitDisc
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
Complex
Complex.instZero
β€”β€”
conj_conj πŸ“–mathematicalβ€”Star.star
Complex.UnitDisc
instStar
β€”star_star
conj_mul πŸ“–mathematicalβ€”Star.star
Complex.UnitDisc
instStar
MulZeroClass.toMul
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
β€”star_mul'
conj_neg πŸ“–mathematicalβ€”Star.star
Complex.UnitDisc
instStar
NegZeroClass.toNeg
MulZeroClass.negZeroClass
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
instHasDistribNeg
β€”star_neg
continuous_coe πŸ“–mathematicalβ€”Continuous
Complex.UnitDisc
Complex
Complex.instTopologicalSpaceUnitDisc
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
β€”Topology.IsEmbedding.continuous
isEmbedding_coe
continuous_pow πŸ“–mathematicalβ€”Continuous
Complex.UnitDisc
Complex.instTopologicalSpaceUnitDisc
PNat
instPowPNat
β€”Topology.IsEmbedding.continuous_iff
isEmbedding_coe
Continuous.comp'
Continuous.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_id'
continuous_coe
exists πŸ“–β€”β€”β€”β€”norm_lt_one
forall πŸ“–β€”β€”β€”β€”norm_lt_one
im_coe πŸ“–mathematicalβ€”Complex.im
coe
im
β€”β€”
im_conj πŸ“–mathematicalβ€”im
Star.star
Complex.UnitDisc
instStar
Real
Real.instNeg
β€”im_star
im_neg πŸ“–mathematicalβ€”im
Complex.UnitDisc
NegZeroClass.toNeg
MulZeroClass.negZeroClass
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
instHasDistribNeg
Real
Real.instNeg
β€”β€”
im_star πŸ“–mathematicalβ€”im
Star.star
Complex.UnitDisc
instStar
Real
Real.instNeg
β€”β€”
im_zero πŸ“–mathematicalβ€”im
Complex.UnitDisc
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
Real
Real.instZero
β€”β€”
instCanLiftCoeLtRealNormOfNat πŸ“–mathematicalβ€”CanLift
Complex
Complex.UnitDisc
coe
Real
Real.instLT
Norm.norm
Complex.instNorm
Real.instOne
β€”β€”
instIsCancelMulZero πŸ“–mathematicalβ€”IsCancelMulZero
Complex.UnitDisc
MulZeroClass.toMul
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
MulZeroClass.toZero
β€”Metric.unitBall.instIsCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
instIsScalarTower_circle πŸ“–mathematicalβ€”IsScalarTower
Circle
Complex.UnitDisc
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Circle.instCommGroup
MulAction.toSemigroupAction
instMulActionCircle
SMulZeroClass.toSMul
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
SMulWithZero.toSMulZeroClass
MulZeroClass.toSMulWithZero
β€”isScalarTower_sphere_ball_ball
instIsScalarTower_circle_circle πŸ“–mathematicalβ€”IsScalarTower
Circle
Complex.UnitDisc
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Circle.instCommGroup
MulAction.toSemigroupAction
Monoid.toMulAction
instMulActionCircle
β€”isScalarTower_sphere_sphere_ball
IsScalarTower.right
instIsScalarTower_closedBall πŸ“–mathematicalβ€”IsScalarTower
Set.Elem
Complex
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
Real
Real.instOne
Complex.UnitDisc
SemigroupAction.toSMul
Monoid.toSemigroup
Metric.unitClosedBall.instMonoid
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
MulAction.toSemigroupAction
instMulActionClosedBall
SMulZeroClass.toSMul
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
SMulWithZero.toSMulZeroClass
MulZeroClass.toSMulWithZero
β€”isScalarTower_closedBall_ball_ball
instIsScalarTower_closedBall_closedBall πŸ“–mathematicalβ€”IsScalarTower
Set.Elem
Complex
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
Real
Real.instOne
Complex.UnitDisc
SMulZeroClass.toSMul
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Metric.unitClosedBall.instMonoidWithZero
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
SMulWithZero.toSMulZeroClass
MulZeroClass.toSMulWithZero
SemigroupAction.toSMul
Monoid.toSemigroup
Metric.unitClosedBall.instMonoid
MulAction.toSemigroupAction
instMulActionClosedBall
β€”isScalarTower_closedBall_closedBall_ball
IsScalarTower.right
instPNatPowAssoc πŸ“–mathematicalβ€”PNatPowAssoc
Complex.UnitDisc
MulZeroClass.toMul
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
instPowPNat
β€”pow_add
pow_one
instSMulCommClass_circle_closedBall πŸ“–mathematicalβ€”SMulCommClass
Circle
Set.Elem
Complex
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
Real
Real.instOne
Complex.UnitDisc
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Circle.instCommGroup
MulAction.toSemigroupAction
instMulActionCircle
Metric.unitClosedBall.instMonoid
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
instMulActionClosedBall
β€”instSMulCommClass_sphere_closedBall_ball
Algebra.to_smulCommClass
instSMulCommClass_circle_left πŸ“–mathematicalβ€”SMulCommClass
Circle
Complex.UnitDisc
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Circle.instCommGroup
MulAction.toSemigroupAction
instMulActionCircle
SMulZeroClass.toSMul
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
SMulWithZero.toSMulZeroClass
MulZeroClass.toSMulWithZero
β€”instSMulCommClass_sphere_ball_ball
instSMulCommClass_circle_right πŸ“–mathematicalβ€”SMulCommClass
Complex.UnitDisc
Circle
SMulZeroClass.toSMul
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
SMulWithZero.toSMulZeroClass
MulZeroClass.toSMulWithZero
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Circle.instCommGroup
MulAction.toSemigroupAction
instMulActionCircle
β€”SMulCommClass.symm
instSMulCommClass_circle_left
instSMulCommClass_closedBall_circle πŸ“–mathematicalβ€”SMulCommClass
Set.Elem
Complex
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
Real
Real.instOne
Circle
Complex.UnitDisc
SemigroupAction.toSMul
Monoid.toSemigroup
Metric.unitClosedBall.instMonoid
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
MulAction.toSemigroupAction
instMulActionClosedBall
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Circle.instCommGroup
instMulActionCircle
β€”SMulCommClass.symm
NormedDivisionRing.to_normOneClass
instSMulCommClass_circle_closedBall
instSMulCommClass_closedBall_left πŸ“–mathematicalβ€”SMulCommClass
Set.Elem
Complex
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
Real
Real.instOne
Complex.UnitDisc
SemigroupAction.toSMul
Monoid.toSemigroup
Metric.unitClosedBall.instMonoid
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
MulAction.toSemigroupAction
instMulActionClosedBall
SMulZeroClass.toSMul
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
SMulWithZero.toSMulZeroClass
MulZeroClass.toSMulWithZero
β€”NormedDivisionRing.to_normOneClass
mul_left_comm
instSMulCommClass_closedBall_right πŸ“–mathematicalβ€”SMulCommClass
Complex.UnitDisc
Set.Elem
Complex
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
Real
Real.instOne
SMulZeroClass.toSMul
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
SMulWithZero.toSMulZeroClass
MulZeroClass.toSMulWithZero
SemigroupAction.toSMul
Monoid.toSemigroup
Metric.unitClosedBall.instMonoid
NormedDivisionRing.to_normOneClass
NormedField.toNormedDivisionRing
MulAction.toSemigroupAction
instMulActionClosedBall
β€”SMulCommClass.symm
NormedDivisionRing.to_normOneClass
instSMulCommClass_closedBall_left
isEmbedding_coe πŸ“–mathematicalβ€”Topology.IsEmbedding
Complex.UnitDisc
Complex
Complex.instTopologicalSpaceUnitDisc
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
β€”Topology.IsEmbedding.subtypeVal
mk_coe πŸ“–β€”Real
Real.instLT
Norm.norm
Complex
Complex.instNorm
coe
Real.instOne
norm_lt_one
β€”β€”β€”
mk_eq_zero πŸ“–mathematicalReal
Real.instLT
Norm.norm
Complex
Complex.instNorm
Real.instOne
Complex.UnitDisc
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
Complex.instZero
β€”β€”
mk_inj πŸ“–β€”Real
Real.instLT
Norm.norm
Complex
Complex.instNorm
Real.instOne
β€”β€”β€”
mk_neg πŸ“–mathematicalReal
Real.instLT
Norm.norm
Complex
Complex.instNorm
Complex.instNeg
Real.instOne
Complex.UnitDisc
NegZeroClass.toNeg
MulZeroClass.negZeroClass
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
instHasDistribNeg
SeminormedAddGroup.toNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SeminormedAddGroup.toAddGroup
norm_neg
β€”β€”
mk_zero πŸ“–mathematicalβ€”Complex
Complex.instZero
Complex.UnitDisc
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
β€”β€”
normSq_lt_one πŸ“–mathematicalβ€”Real
Real.instLT
DFunLike.coe
MonoidWithZeroHom
Complex
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Complex.instSemiring
Real.semiring
MonoidWithZeroHom.funLike
Complex.normSq
coe
Real.instOne
β€”Complex.norm_mul_self_eq_normSq
sq
sq_norm_lt_one
norm_lt_one πŸ“–mathematicalβ€”Real
Real.instLT
Norm.norm
Complex
Complex.instNorm
coe
Real.instOne
β€”mem_ball_zero_iff
norm_ne_one πŸ“–β€”β€”β€”β€”LT.lt.ne
norm_lt_one
one_add_coe_ne_zero πŸ“–β€”β€”β€”β€”neg_eq_iff_add_eq_zero
coe_ne_neg_one
pow_eq_zero πŸ“–mathematicalβ€”Complex.UnitDisc
PNat
instPowPNat
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
β€”coe_pow
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
re_coe πŸ“–mathematicalβ€”Complex.re
coe
re
β€”β€”
re_conj πŸ“–mathematicalβ€”re
Star.star
Complex.UnitDisc
instStar
β€”re_star
re_neg πŸ“–mathematicalβ€”re
Complex.UnitDisc
NegZeroClass.toNeg
MulZeroClass.negZeroClass
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
instHasDistribNeg
Real
Real.instNeg
β€”β€”
re_star πŸ“–mathematicalβ€”re
Star.star
Complex.UnitDisc
instStar
β€”β€”
re_zero πŸ“–mathematicalβ€”re
Complex.UnitDisc
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
Real
Real.instZero
β€”β€”
sq_norm_lt_one πŸ“–mathematicalβ€”Real
Real.instLT
Monoid.toNatPow
Real.instMonoid
Norm.norm
Complex
Complex.instNorm
coe
Real.instOne
β€”sq_lt_one_iff_abs_lt_one
Real.instIsStrictOrderedRing
abs_norm
norm_lt_one
star_eq_zero πŸ“–mathematicalβ€”Star.star
Complex.UnitDisc
instStar
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
β€”Complex.instNontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
star_neg πŸ“–mathematicalβ€”Star.star
Complex.UnitDisc
instStar
NegZeroClass.toNeg
MulZeroClass.negZeroClass
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
instHasDistribNeg
β€”β€”
star_zero πŸ“–mathematicalβ€”Star.star
Complex.UnitDisc
instStar
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
β€”β€”
tendsto_pow_atTop_nhds_zero πŸ“–mathematicalβ€”Filter.Tendsto
PNat
Complex.UnitDisc
instPowPNat
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
nhds
Complex.instTopologicalSpaceUnitDisc
MulZeroClass.toZero
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
β€”Topology.IsEmbedding.tendsto_nhds_iff
isEmbedding_coe
Filter.Tendsto.comp
tendsto_pow_atTop_nhds_zero_iff_norm_lt_one
NormedDivisionRing.toNormMulClass
norm_lt_one
tendsto_PNat_val_atTop_atTop

---

← Back to Index