Documentation

Mathlib.Analysis.Complex.UnitDisc.Basic

PoincarΓ© disc #

In this file we define Complex.UnitDisc to be the unit disc in the complex plane. We also introduce some basic operations on this disc.

The complex unit disc, denoted as 𝔻 withinin the Complex namespace

Equations
    Instances For

      The complex unit disc, denoted as 𝔻 withinin the Complex namespace

      Equations
        Instances For

          Coercion to β„‚.

          Equations
            Instances For
              theorem Complex.UnitDisc.coe_injective_iff {a₁ aβ‚‚ : UnitDisc} :
              a₁ = aβ‚‚ ↔ ↑a₁ = ↑aβ‚‚
              @[simp]
              theorem Complex.UnitDisc.coe_inj {z w : UnitDisc} :
              ↑z = ↑w ↔ z = w
              @[simp]
              theorem Complex.UnitDisc.coe_mul (z w : UnitDisc) :
              ↑(z * w) = ↑z * ↑w
              @[simp]
              theorem Complex.UnitDisc.coe_neg (z : UnitDisc) :
              ↑(-z) = -↑z

              A constructor that assumes β€–zβ€– < 1 instead of dist z 0 < 1 and returns an element of 𝔻 instead of β†₯Metric.ball (0 : β„‚) 1.

              Equations
                Instances For
                  def Complex.UnitDisc.casesOn {motive : UnitDisc β†’ Sort u_1} (mk : (z : β„‚) β†’ (hz : β€–zβ€– < 1) β†’ motive (mk z hz)) (z : UnitDisc) :
                  motive z

                  A cases eliminator that makes cases z use UnitDisc.mk instead of Subtype.mk.

                  Equations
                    Instances For
                      @[simp]
                      theorem Complex.UnitDisc.casesOn_mk {motive : UnitDisc β†’ Sort u_1} (mk' : (z : β„‚) β†’ (hz : β€–zβ€– < 1) β†’ motive (mk z hz)) {z : β„‚} (hz : β€–zβ€– < 1) :
                      UnitDisc.casesOn mk' (mk z hz) = mk' z hz
                      @[simp]
                      theorem Complex.UnitDisc.coe_mk (z : β„‚) (hz : β€–zβ€– < 1) :
                      ↑(mk z hz) = z
                      @[simp]
                      theorem Complex.UnitDisc.mk_coe (z : UnitDisc) (hz : ‖↑zβ€– < 1 := β‹―) :
                      mk (↑z) hz = z
                      @[simp]
                      theorem Complex.UnitDisc.mk_inj {z w : β„‚} (hz : β€–zβ€– < 1) (hw : β€–wβ€– < 1) :
                      mk z hz = mk w hw ↔ z = w
                      theorem Complex.UnitDisc.forall {p : UnitDisc β†’ Prop} :
                      (βˆ€ (z : UnitDisc), p z) ↔ βˆ€ (z : β„‚) (hz : β€–zβ€– < 1), p (mk z hz)
                      theorem Complex.UnitDisc.exists {p : UnitDisc β†’ Prop} :
                      (βˆƒ (z : UnitDisc), p z) ↔ βˆƒ (z : β„‚) (hz : β€–zβ€– < 1), p (mk z hz)
                      @[simp]
                      theorem Complex.UnitDisc.mk_neg (z : β„‚) (hz : β€–-zβ€– < 1) :
                      mk (-z) hz = -mk z β‹―
                      @[simp]
                      theorem Complex.UnitDisc.mk_eq_zero {z : β„‚} (hz : β€–zβ€– < 1) :
                      mk z hz = 0 ↔ z = 0
                      @[simp]
                      theorem Complex.UnitDisc.coe_circle_smul (z : Circle) (w : UnitDisc) :
                      ↑(z β€’ w) = ↑z * ↑w
                      @[deprecated Complex.UnitDisc.coe_circle_smul (since := "2026-01-06")]
                      theorem Complex.UnitDisc.coe_smul_circle (z : Circle) (w : UnitDisc) :
                      ↑(z β€’ w) = ↑z * ↑w

                      Alias of Complex.UnitDisc.coe_circle_smul.

                      @[simp]
                      theorem Complex.UnitDisc.coe_closedBall_smul (z : ↑(Metric.closedBall 0 1)) (w : UnitDisc) :
                      ↑(z β€’ w) = ↑z * ↑w
                      @[deprecated Complex.UnitDisc.coe_closedBall_smul (since := "2026-01-06")]
                      theorem Complex.UnitDisc.coe_smul_closedBall (z : ↑(Metric.closedBall 0 1)) (w : UnitDisc) :
                      ↑(z β€’ w) = ↑z * ↑w

                      Alias of Complex.UnitDisc.coe_closedBall_smul.

                      @[simp]
                      theorem Complex.UnitDisc.coe_pow (z : UnitDisc) (n : β„•+) :
                      ↑(z ^ n) = ↑z ^ ↑n

                      Real part of a point of the unit disc.

                      Equations
                        Instances For

                          Imaginary part of a point of the unit disc.

                          Equations
                            Instances For
                              @[simp]
                              theorem Complex.UnitDisc.re_coe (z : UnitDisc) :
                              (↑z).re = z.re
                              @[simp]
                              theorem Complex.UnitDisc.im_coe (z : UnitDisc) :
                              (↑z).im = z.im

                              Conjugate point of the unit disc.

                              Equations
                                @[deprecated Star.star (since := "2026-01-06")]

                                Conjugate point of the unit disc. Deprecated, use star instead.

                                Equations
                                  Instances For
                                    @[deprecated Complex.UnitDisc.coe_star (since := "2026-01-06")]
                                    theorem Complex.UnitDisc.coe_conj (z : UnitDisc) :
                                    ↑(star z) = (starRingEnd β„‚) ↑z

                                    Alias of Complex.UnitDisc.coe_star.

                                    @[deprecated star_star (since := "2026-01-06")]
                                    @[deprecated Complex.UnitDisc.star_neg (since := "2026-01-06")]

                                    Alias of Complex.UnitDisc.star_neg.

                                    @[deprecated Complex.UnitDisc.re_star (since := "2026-01-06")]

                                    Alias of Complex.UnitDisc.re_star.

                                    @[deprecated Complex.UnitDisc.im_star (since := "2026-01-06")]

                                    Alias of Complex.UnitDisc.im_star.

                                    @[deprecated star_mul' (since := "2026-01-06")]
                                    theorem Complex.UnitDisc.conj_mul (z w : UnitDisc) :
                                    star (z * w) = star z * star w