Documentation Verification Report

UnitBall

πŸ“ Source: Mathlib/Analysis/Normed/Field/UnitBall.lean

Statistics

MetricCount
DefinitionsinstCommGroup, instHasDistribNeg, instCommSemigroup, instHasDistribNeg, instSemigroup, instSemigroupWithZero, instZero, instCommMonoid, instHasDistribNeg, instMonoid, instMonoidWithZero, instSemigroup, instSemigroupWithZero, instZero, instCommMonoid, instDiv, instGroup, instInv, instMonoid, instZPow, unitClosedBall, unitSphere, unitBall, unitClosedBall, unitSphereToUnits
25
TheoremsinstContinuousMul, instIsTopologicalGroup, coe_eq_zero, coe_mul, coe_zero, instContinuousMul, instIsCancelMulZero, instIsLeftCancelMulZero, instIsRightCancelMulZero, coe_eq_one, coe_eq_zero, coe_mul, coe_one, coe_pow, coe_zero, instContinuousMul, instIsCancelMulZero, coe_div, coe_inv, coe_mul, coe_one, coe_pow, coe_zpow, coe_unitSphere, unitSphereToUnits_apply_coe, unitSphereToUnits_injective
26
Total51

Metric.sphere

Definitions

NameCategoryTheorems
instCommGroup πŸ“–CompOpβ€”
instHasDistribNeg πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instContinuousMul πŸ“–mathematicalβ€”ContinuousMul
Set.Elem
Metric.sphere
SeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
Real
Real.instOne
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Metric.unitSphere.instMonoid
β€”Submonoid.continuousMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
instIsTopologicalGroup πŸ“–mathematicalβ€”IsTopologicalGroup
Set.Elem
Metric.sphere
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Real
Real.instOne
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Metric.unitSphere.instGroup
β€”instContinuousMul
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
Continuous.invβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_subtype_val
ne_zero_of_mem_unit_sphere

Metric.unitBall

Definitions

NameCategoryTheorems
instCommSemigroup πŸ“–CompOpβ€”
instHasDistribNeg πŸ“–CompOpβ€”
instSemigroup πŸ“–CompOp
2 mathmath: instContinuousMul, coe_mul
instSemigroupWithZero πŸ“–CompOp
6 mathmath: isScalarTower_closedBall_ball_ball, instIsLeftCancelMulZero, instSMulCommClass_sphere_ball_ball, instIsRightCancelMulZero, isScalarTower_sphere_ball_ball, instIsCancelMulZero
instZero πŸ“–CompOp
5 mathmath: coe_eq_zero, instIsLeftCancelMulZero, instIsRightCancelMulZero, instIsCancelMulZero, coe_zero

Theorems

NameKindAssumesProvesValidatesDepends On
coe_eq_zero πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.ball
Real
Real.instOne
Set.Elem
instZero
β€”Subtype.val_injective
coe_zero
coe_mul πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.ball
NonUnitalSeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
Real
Real.instOne
Set.Elem
Semigroup.toMul
instSemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
coe_zero πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.ball
Real
Real.instOne
Set.Elem
instZero
β€”β€”
instContinuousMul πŸ“–mathematicalβ€”ContinuousMul
Set.Elem
Metric.ball
NonUnitalSeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
Real
Real.instOne
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Semigroup.toMul
instSemigroup
β€”Subsemigroup.continuousMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
instIsCancelMulZero πŸ“–mathematicalβ€”IsCancelMulZero
Set.Elem
Metric.ball
NonUnitalSeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
Real
Real.instOne
MulZeroClass.toMul
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
instZero
β€”instIsLeftCancelMulZero
IsCancelMulZero.toIsLeftCancelMulZero
instIsRightCancelMulZero
IsCancelMulZero.toIsRightCancelMulZero
instIsLeftCancelMulZero πŸ“–mathematicalβ€”IsLeftCancelMulZero
Set.Elem
Metric.ball
NonUnitalSeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
Real
Real.instOne
MulZeroClass.toMul
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
instZero
β€”Function.Injective.isLeftCancelMulZero
Subtype.val_injective
instIsRightCancelMulZero πŸ“–mathematicalβ€”IsRightCancelMulZero
Set.Elem
Metric.ball
NonUnitalSeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
Real
Real.instOne
MulZeroClass.toMul
SemigroupWithZero.toMulZeroClass
instSemigroupWithZero
instZero
β€”Function.Injective.isRightCancelMulZero
Subtype.val_injective

Metric.unitClosedBall

Definitions

NameCategoryTheorems
instCommMonoid πŸ“–CompOpβ€”
instHasDistribNeg πŸ“–CompOpβ€”
instMonoid πŸ“–CompOp
22 mathmath: Complex.UnitDisc.instSMulCommClass_closedBall_circle, Complex.UnitDisc.instSMulCommClass_closedBall_left, isScalarTower_closedBall_closedBall_closedBall, isScalarTower_sphere_closedBall_closedBall, continuousSMul_closedBall_ball, Complex.UnitDisc.coe_closedBall_smul, instSMulCommClass_sphere_closedBall_closedBall, isScalarTower_closedBall_ball_ball, Complex.UnitDisc.instSMulCommClass_closedBall_right, Complex.UnitDisc.instIsScalarTower_closedBall, isScalarTower_sphere_closedBall_ball, Complex.UnitDisc.coe_smul_closedBall, coe_one, continuousSMul_closedBall_closedBall, instSMulCommClass_closedBall_closedBall_ball, Complex.UnitDisc.instSMulCommClass_circle_closedBall, coe_pow, coe_eq_one, instSMulCommClass_sphere_closedBall_ball, isScalarTower_closedBall_closedBall_ball, instSMulCommClass_closedBall_closedBall_closedBall, Complex.UnitDisc.instIsScalarTower_closedBall_closedBall
instMonoidWithZero πŸ“–CompOp
2 mathmath: instIsCancelMulZero, Complex.UnitDisc.instIsScalarTower_closedBall_closedBall
instSemigroup πŸ“–CompOp
2 mathmath: coe_mul, instContinuousMul
instSemigroupWithZero πŸ“–CompOpβ€”
instZero πŸ“–CompOp
3 mathmath: coe_eq_zero, instIsCancelMulZero, coe_zero

Theorems

NameKindAssumesProvesValidatesDepends On
coe_eq_one πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
Real
Real.instOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Set.Elem
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
β€”Subtype.val_injective
coe_one
coe_eq_zero πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.closedBall
Real
Real.instOne
Set.Elem
instZero
β€”Subtype.val_injective
coe_zero
coe_mul πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.closedBall
NonUnitalSeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
Real
Real.instOne
Set.Elem
Semigroup.toMul
instSemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
coe_one πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
Real
Real.instOne
Set.Elem
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
coe_pow πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
Real
Real.instOne
Set.Elem
Monoid.toNatPow
instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”β€”
coe_zero πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.closedBall
Real
Real.instOne
Set.Elem
instZero
β€”β€”
instContinuousMul πŸ“–mathematicalβ€”ContinuousMul
Set.Elem
Metric.closedBall
NonUnitalSeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
Real
Real.instOne
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Semigroup.toMul
instSemigroup
β€”Subsemigroup.continuousMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
instIsCancelMulZero πŸ“–mathematicalβ€”IsCancelMulZero
Set.Elem
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
Real
Real.instOne
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
instMonoidWithZero
instZero
β€”Function.Injective.isCancelMulZero
Subtype.val_injective

Metric.unitSphere

Definitions

NameCategoryTheorems
instCommMonoid πŸ“–CompOpβ€”
instDiv πŸ“–CompOp
1 mathmath: coe_div
instGroup πŸ“–CompOp
1 mathmath: Metric.sphere.instIsTopologicalGroup
instInv πŸ“–CompOp
1 mathmath: coe_inv
instMonoid πŸ“–CompOp
21 mathmath: continuousSMul_sphere_ball, coe_one, continuousSMul_sphere_sphere, instSMulCommClass_sphere_sphere_sphere, isScalarTower_sphere_closedBall_closedBall, coe_mul, unitSphereToUnits_apply_coe, unitSphereToUnits_injective, isScalarTower_sphere_sphere_sphere, instSMulCommClass_sphere_closedBall_closedBall, continuousSMul_sphere_closedBall, isScalarTower_sphere_sphere_closedBall, Metric.sphere.instContinuousMul, isScalarTower_sphere_sphere_ball, isScalarTower_sphere_closedBall_ball, instSMulCommClass_sphere_ball_ball, coe_pow, isScalarTower_sphere_ball_ball, instSMulCommClass_sphere_closedBall_ball, instSMulCommClass_sphere_sphere_closedBall, instSMulCommClass_sphere_sphere_ball
instZPow πŸ“–CompOp
1 mathmath: coe_zpow

Theorems

NameKindAssumesProvesValidatesDepends On
coe_div πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.sphere
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Real
Real.instOne
Set.Elem
instDiv
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
β€”β€”
coe_inv πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.sphere
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Real
Real.instOne
Set.Elem
instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
β€”β€”
coe_mul πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.sphere
SeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
Real
Real.instOne
Set.Elem
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
coe_one πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.sphere
SeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
Real
Real.instOne
Set.Elem
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
coe_pow πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.sphere
SeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
Real
Real.instOne
Set.Elem
Monoid.toNatPow
instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”β€”
coe_zpow πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.sphere
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Real
Real.instOne
Set.Elem
instZPow
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
β€”β€”

Submonoid

Definitions

NameCategoryTheorems
unitClosedBall πŸ“–CompOpβ€”
unitSphere πŸ“–CompOp
69 mathmath: Real.hasFDerivAt_fourierChar_neg_bilinear_left, Circle.exp_arg, Circle.injective_arg, Real.fderiv_fourierChar_neg_bilinear_right_apply, Circle.ofConjDivSelf_coe, Circle.starRingEnd_addChar, AddCircle.homeomorphCircle'_symm_apply, rotation_apply, toMatrix_rotation, Complex.UnitDisc.coe_smul_circle, Orientation.rotation_map_complex, BoundedContinuousFunction.mem_charPoly, BoundedContinuousFunction.charAlgHom_apply, Circle.arg_eq_arg, fourier_one, Real.Angle.coe_toCircle, fourier_neg', Circle.smul_def, Circle.ext_iff, Circle.coe_inv_eq_conj, Circle.coe_mul, Real.Angle.arg_toCircle, Circle.coe_pow, Circle.invOn_arg_exp, Circle.star_addChar, Circle.leftInverse_exp_arg, coe_unitSphere, Circle.norm_coe, fourier_apply, Orientation.kahler_rotation_left', rotationOf_coe, Real.hasDerivAt_fourierChar, Orientation.kahler_rotation_left, Circle.coe_eq_one, Real.fourierChar_apply, Circle.coe_inv, Real.differentiable_fourierChar, Circle.normSq_coe, fourier_zero', ZMod.toCircle_intCast, ZMod.toCircle_natCast, Real.deriv_fourierChar, Real.differentiable_fourierChar_neg_bilinear_right, Circle.coeHom_apply, rootsOfUnityCircleEquiv_apply, Circle.coe_inj, Orientation.kahler_rotation_right, fourier_coe_apply', Real.hasFDerivAt_fourierChar_neg_bilinear_right, ZMod.toCircle_apply, Circle.arg_exp, Real.differentiable_fourierChar_neg_bilinear_left, Circle.coe_exp, fourier_add', BoundedContinuousFunction.charMonoidHom_apply, Circle.toUnits_apply, Real.probChar_apply, Circle.coe_injective, Circle.coe_zpow, Circle.coe_div, Circle.coe_one, Real.fderiv_fourierChar_neg_bilinear_left_apply, Circle.argEquiv_apply_coe, Complex.UnitDisc.coe_circle_smul, ZMod.stdAddChar_apply, Circle.argPartialEquiv_apply, MeasureTheory.charFun_eq_integral_probChar, Complex.rotation, BoundedContinuousFunction.char_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_unitSphere πŸ“–mathematicalβ€”SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
instSetLike
unitSphere
Metric.sphere
SeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Real
Real.instOne
β€”β€”

Subsemigroup

Definitions

NameCategoryTheorems
unitBall πŸ“–CompOpβ€”
unitClosedBall πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
unitSphereToUnits πŸ“–CompOp
2 mathmath: unitSphereToUnits_apply_coe, unitSphereToUnits_injective

Theorems

NameKindAssumesProvesValidatesDepends On
unitSphereToUnits_apply_coe πŸ“–mathematicalβ€”Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
DFunLike.coe
MonoidHom
Set.Elem
Metric.sphere
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Real
Real.instOne
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
Metric.unitSphere.instMonoid
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
Units.instMulOneClass
MonoidHom.instFunLike
unitSphereToUnits
Set
Set.instMembership
β€”NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
unitSphereToUnits_injective πŸ“–mathematicalβ€”Set.Elem
Metric.sphere
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NormedRing.toRing
Real
Real.instOne
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
Metric.unitSphere.instMonoid
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
Units.instMulOneClass
MonoidHom.instFunLike
unitSphereToUnits
β€”NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass

---

← Back to Index