Documentation

Mathlib.Analysis.Normed.Field.UnitBall

Algebraic structures on unit balls and spheres #

In this file we define algebraic structures (Semigroup, CommSemigroup, Monoid, CommMonoid, Group, CommGroup) on Metric.ball (0 : ๐•œ) 1, Metric.closedBall (0 : ๐•œ) 1, and Metric.sphere (0 : ๐•œ) 1. In each case we use the weakest possible typeclass assumption on ๐•œ, from NonUnitalSeminormedRing to NormedField.

Algebraic structures on Metric.ball 0 1 #

def Subsemigroup.unitBall (๐•œ : Type u_2) [NonUnitalSeminormedRing ๐•œ] :
Subsemigroup ๐•œ

Unit ball in a non-unital seminormed ring as a bundled Subsemigroup.

Equations
    Instances For
      instance Metric.unitBall.instSemigroup {๐•œ : Type u_1} [NonUnitalSeminormedRing ๐•œ] :
      Semigroup โ†‘(ball 0 1)
      Equations
        instance Metric.unitBall.instCommSemigroup {๐•œ : Type u_1} [SeminormedCommRing ๐•œ] :
        CommSemigroup โ†‘(ball 0 1)
        Equations
          instance Metric.unitBall.instHasDistribNeg {๐•œ : Type u_1} [NonUnitalSeminormedRing ๐•œ] :
          HasDistribNeg โ†‘(ball 0 1)
          Equations
            @[simp]
            theorem Metric.unitBall.coe_mul {๐•œ : Type u_1} [NonUnitalSeminormedRing ๐•œ] (x y : โ†‘(ball 0 1)) :
            โ†‘(x * y) = โ†‘x * โ†‘y
            instance Metric.unitBall.instZero {๐•œ : Type u_1} [Zero ๐•œ] [PseudoMetricSpace ๐•œ] :
            Zero โ†‘(ball 0 1)
            Equations
              @[simp]
              theorem Metric.unitBall.coe_zero {๐•œ : Type u_1} [Zero ๐•œ] [PseudoMetricSpace ๐•œ] :
              โ†‘0 = 0
              @[simp]
              theorem Metric.unitBall.coe_eq_zero {๐•œ : Type u_1} [Zero ๐•œ] [PseudoMetricSpace ๐•œ] {a : โ†‘(ball 0 1)} :
              โ†‘a = 0 โ†” a = 0

              Algebraic instances for Metric.closedBall 0 1 #

              def Subsemigroup.unitClosedBall (๐•œ : Type u_2) [NonUnitalSeminormedRing ๐•œ] :
              Subsemigroup ๐•œ

              Closed unit ball in a non-unital seminormed ring as a bundled Subsemigroup.

              Equations
                Instances For
                  @[simp]
                  theorem Metric.unitClosedBall.coe_mul {๐•œ : Type u_1} [NonUnitalSeminormedRing ๐•œ] (x y : โ†‘(closedBall 0 1)) :
                  โ†‘(x * y) = โ†‘x * โ†‘y
                  instance Metric.unitClosedBall.instZero {๐•œ : Type u_1} [Zero ๐•œ] [PseudoMetricSpace ๐•œ] :
                  Zero โ†‘(closedBall 0 1)
                  Equations
                    @[simp]
                    theorem Metric.unitClosedBall.coe_zero {๐•œ : Type u_1} [Zero ๐•œ] [PseudoMetricSpace ๐•œ] :
                    โ†‘0 = 0
                    @[simp]
                    theorem Metric.unitClosedBall.coe_eq_zero {๐•œ : Type u_1} [Zero ๐•œ] [PseudoMetricSpace ๐•œ] {a : โ†‘(closedBall 0 1)} :
                    โ†‘a = 0 โ†” a = 0
                    def Submonoid.unitClosedBall (๐•œ : Type u_2) [SeminormedRing ๐•œ] [NormOneClass ๐•œ] :
                    Submonoid ๐•œ

                    Closed unit ball in a seminormed ring as a bundled Submonoid.

                    Equations
                      Instances For
                        instance Metric.unitClosedBall.instMonoid {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormOneClass ๐•œ] :
                        Monoid โ†‘(closedBall 0 1)
                        Equations
                          instance Metric.unitClosedBall.instCommMonoid {๐•œ : Type u_1} [SeminormedCommRing ๐•œ] [NormOneClass ๐•œ] :
                          CommMonoid โ†‘(closedBall 0 1)
                          Equations
                            @[simp]
                            theorem Metric.unitClosedBall.coe_one {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormOneClass ๐•œ] :
                            โ†‘1 = 1
                            @[simp]
                            theorem Metric.unitClosedBall.coe_eq_one {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormOneClass ๐•œ] {a : โ†‘(closedBall 0 1)} :
                            โ†‘a = 1 โ†” a = 1
                            @[simp]
                            theorem Metric.unitClosedBall.coe_pow {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormOneClass ๐•œ] (x : โ†‘(closedBall 0 1)) (n : โ„•) :
                            โ†‘(x ^ n) = โ†‘x ^ n
                            instance Metric.unitClosedBall.instMonoidWithZero {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormOneClass ๐•œ] :
                            Equations

                              Algebraic instances on the unit sphere #

                              def Submonoid.unitSphere (๐•œ : Type u_2) [SeminormedRing ๐•œ] [NormMulClass ๐•œ] [NormOneClass ๐•œ] :
                              Submonoid ๐•œ

                              Unit sphere in a seminormed ring (with strictly multiplicative norm) as a bundled Submonoid.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem Submonoid.coe_unitSphere (๐•œ : Type u_2) [SeminormedRing ๐•œ] [NormMulClass ๐•œ] [NormOneClass ๐•œ] :
                                  โ†‘(unitSphere ๐•œ) = Metric.sphere 0 1
                                  instance Metric.unitSphere.instInv {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
                                  Inv โ†‘(sphere 0 1)
                                  Equations
                                    @[simp]
                                    theorem Metric.unitSphere.coe_inv {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] (x : โ†‘(sphere 0 1)) :
                                    โ†‘xโปยน = (โ†‘x)โปยน
                                    instance Metric.unitSphere.instDiv {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
                                    Div โ†‘(sphere 0 1)
                                    Equations
                                      @[simp]
                                      theorem Metric.unitSphere.coe_div {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] (x y : โ†‘(sphere 0 1)) :
                                      โ†‘(x / y) = โ†‘x / โ†‘y
                                      instance Metric.unitSphere.instZPow {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
                                      Pow โ†‘(sphere 0 1) โ„ค
                                      Equations
                                        @[simp]
                                        theorem Metric.unitSphere.coe_zpow {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] (x : โ†‘(sphere 0 1)) (n : โ„ค) :
                                        โ†‘(x ^ n) = โ†‘x ^ n
                                        instance Metric.unitSphere.instMonoid {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormMulClass ๐•œ] [NormOneClass ๐•œ] :
                                        Monoid โ†‘(sphere 0 1)
                                        Equations
                                          instance Metric.unitSphere.instCommMonoid {๐•œ : Type u_1} [SeminormedCommRing ๐•œ] [NormMulClass ๐•œ] [NormOneClass ๐•œ] :
                                          CommMonoid โ†‘(sphere 0 1)
                                          Equations
                                            @[simp]
                                            theorem Metric.unitSphere.coe_one {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormMulClass ๐•œ] [NormOneClass ๐•œ] :
                                            โ†‘1 = 1
                                            @[simp]
                                            theorem Metric.unitSphere.coe_mul {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormMulClass ๐•œ] [NormOneClass ๐•œ] (x y : โ†‘(sphere 0 1)) :
                                            โ†‘(x * y) = โ†‘x * โ†‘y
                                            @[simp]
                                            theorem Metric.unitSphere.coe_pow {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormMulClass ๐•œ] [NormOneClass ๐•œ] (x : โ†‘(sphere 0 1)) (n : โ„•) :
                                            โ†‘(x ^ n) = โ†‘x ^ n
                                            def unitSphereToUnits (๐•œ : Type u_2) [NormedDivisionRing ๐•œ] :
                                            โ†‘(Metric.sphere 0 1) โ†’* ๐•œหฃ

                                            Monoid homomorphism from the unit sphere in a normed division ring to the group of units.

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem unitSphereToUnits_apply_coe {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] (x : โ†‘(Metric.sphere 0 1)) :
                                                โ†‘((unitSphereToUnits ๐•œ) x) = โ†‘x
                                                instance Metric.unitSphere.instGroup {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
                                                Group โ†‘(sphere 0 1)
                                                Equations
                                                  instance Metric.sphere.instHasDistribNeg {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormMulClass ๐•œ] [NormOneClass ๐•œ] :
                                                  HasDistribNeg โ†‘(sphere 0 1)
                                                  Equations
                                                    instance Metric.sphere.instContinuousMul {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormMulClass ๐•œ] [NormOneClass ๐•œ] :
                                                    ContinuousMul โ†‘(sphere 0 1)
                                                    instance Metric.sphere.instCommGroup {๐•œ : Type u_1} [NormedField ๐•œ] :
                                                    CommGroup โ†‘(sphere 0 1)
                                                    Equations