Documentation Verification Report

Bounded

πŸ“ Source: Mathlib/Analysis/Normed/Group/Bounded.lean

Statistics

MetricCount
Definitions0
Theoremsexists_norm_le, exists_norm_le', exists_pos_norm_le, exists_pos_norm_le', exists_pos_norm_lt, exists_pos_norm_lt', bounded_above_of_compact_support, cobounded_of_norm, cobounded_of_norm', op_one_isBoundedUnder_le, op_one_isBoundedUnder_le', op_zero_isBoundedUnder_le, op_zero_isBoundedUnder_le', hasBasis_cobounded_norm, hasBasis_cobounded_norm', inv_cobounded, neg_cobounded, tendsto_inv_cobounded, tendsto_neg_cobounded, exists_bound_of_continuous, exists_pos_le_norm, exists_bound_of_continuous, exists_pos_le_norm, exists_bound_of_continuousOn, exists_bound_of_continuousOn', cauchySeq_iff, cauchySeq_iff, comap_norm_atTop, comap_norm_atTop', eventually_cobounded_le_norm, eventually_cobounded_le_norm', isBounded_iff_forall_norm_le, isBounded_iff_forall_norm_le', tendsto_norm_atTop_iff_cobounded, tendsto_norm_atTop_iff_cobounded', tendsto_norm_cobounded_atTop, tendsto_norm_cobounded_atTop', tendsto_norm_cocompact_atTop, tendsto_norm_cocompact_atTop', tendsto_norm_comp_cofinite_atTop_of_isClosedEmbedding, tendsto_norm_comp_cofinite_atTop_of_isClosedEmbedding'
41
Total41

Bornology.IsBounded

Theorems

NameKindAssumesProvesValidatesDepends On
exists_norm_le πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedAddGroup.toPseudoMetricSpace
Real
Real.instLE
Norm.norm
SeminormedAddGroup.toNorm
β€”isBounded_iff_forall_norm_le
exists_norm_le' πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedGroup.toPseudoMetricSpace
Real
Real.instLE
Norm.norm
SeminormedGroup.toNorm
β€”isBounded_iff_forall_norm_le'
exists_pos_norm_le πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedAddGroup.toPseudoMetricSpace
Real
Real.instLT
Real.instZero
Real.instLE
Norm.norm
SeminormedAddGroup.toNorm
β€”exists_norm_le
lt_max_of_lt_right
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
LE.le.trans
le_max_left
exists_pos_norm_le' πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedGroup.toPseudoMetricSpace
Real
Real.instLT
Real.instZero
Real.instLE
Norm.norm
SeminormedGroup.toNorm
β€”exists_norm_le'
lt_max_of_lt_right
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
LE.le.trans
le_max_left
exists_pos_norm_lt πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedAddGroup.toPseudoMetricSpace
Real
Real.instLT
Real.instZero
Norm.norm
SeminormedAddGroup.toNorm
β€”exists_pos_norm_le
add_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
LE.le.trans_lt
lt_add_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
exists_pos_norm_lt' πŸ“–mathematicalBornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedGroup.toPseudoMetricSpace
Real
Real.instLT
Real.instZero
Norm.norm
SeminormedGroup.toNorm
β€”exists_pos_norm_le'
add_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
LE.le.trans_lt
lt_add_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
bounded_above_of_compact_support πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
NormedAddGroup.toSeminormedAddGroup
HasCompactSupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
NormedAddGroup.toAddGroup
Real
Real.instLE
Norm.norm
NormedAddGroup.toNorm
β€”bddAbove_range_of_hasCompactSupport
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
norm
HasCompactSupport.norm

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
hasBasis_cobounded_norm πŸ“–mathematicalβ€”HasBasis
Real
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedAddGroup.toPseudoMetricSpace
setOf
Real.instLE
Norm.norm
SeminormedAddGroup.toNorm
β€”HasBasis.cobounded_of_norm
atTop_basis
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
hasBasis_cobounded_norm' πŸ“–mathematicalβ€”HasBasis
Real
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedGroup.toPseudoMetricSpace
setOf
Real.instLE
Norm.norm
SeminormedGroup.toNorm
β€”HasBasis.cobounded_of_norm'
atTop_basis
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
inv_cobounded πŸ“–mathematicalβ€”Filter
instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
SeminormedGroup.toGroup
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedGroup.toPseudoMetricSpace
β€”comap_comap
norm_inv'
neg_cobounded πŸ“–mathematicalβ€”Filter
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SeminormedAddGroup.toAddGroup
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedAddGroup.toPseudoMetricSpace
β€”comap_norm_atTop
comap_neg
comap_comap
norm_neg
tendsto_inv_cobounded πŸ“–mathematicalβ€”Tendsto
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
SeminormedGroup.toGroup
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedGroup.toPseudoMetricSpace
β€”Eq.le
inv_cobounded
tendsto_neg_cobounded πŸ“–mathematicalβ€”Tendsto
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SeminormedAddGroup.toAddGroup
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedAddGroup.toPseudoMetricSpace
β€”Eq.le
neg_cobounded

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
cobounded_of_norm πŸ“–mathematicalFilter.HasBasis
Real
Filter.atTop
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedAddGroup.toPseudoMetricSpace
Set.preimage
Norm.norm
SeminormedAddGroup.toNorm
β€”comap
comap_norm_atTop
cobounded_of_norm' πŸ“–mathematicalFilter.HasBasis
Real
Filter.atTop
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedGroup.toPseudoMetricSpace
Set.preimage
Norm.norm
SeminormedGroup.toNorm
β€”comap
comap_norm_atTop'

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
op_one_isBoundedUnder_le πŸ“–β€”Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedGroup.toPseudoMetricSpace
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
SeminormedGroup.toGroup
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
SeminormedGroup.toNorm
Real.instMul
β€”β€”op_one_isBoundedUnder_le'
one_mul
op_one_isBoundedUnder_le' πŸ“–β€”Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedGroup.toPseudoMetricSpace
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
SeminormedGroup.toGroup
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
SeminormedGroup.toNorm
Real.instMul
β€”β€”NormedCommGroup.tendsto_nhds_one
exists_pos_mul_lt
Real.instIsStrictOrderedRing
Filter.mp_mem
Filter.eventually_map
Filter.univ_mem'
LE.le.trans_lt
le_total
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg'
mul_le_mul
IsOrderedRing.toPosMulMono
mul_le_mul_of_nonneg_left
le_of_lt
mul_nonneg
mul_right_comm
op_zero_isBoundedUnder_le πŸ“–β€”Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SeminormedAddGroup.toAddGroup
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
SeminormedAddGroup.toNorm
Real.instMul
β€”β€”op_zero_isBoundedUnder_le'
one_mul
op_zero_isBoundedUnder_le' πŸ“–β€”Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SeminormedAddGroup.toAddGroup
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
SeminormedAddGroup.toNorm
Real.instMul
β€”β€”NormedAddCommGroup.tendsto_nhds_zero
exists_pos_mul_lt
Real.instIsStrictOrderedRing
Filter.mp_mem
Filter.eventually_map
Filter.univ_mem'
LE.le.trans_lt
le_total
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
mul_le_mul
IsOrderedRing.toPosMulMono
mul_le_mul_of_nonneg_left
le_of_lt
mul_nonneg
mul_right_comm

HasCompactMulSupport

Theorems

NameKindAssumesProvesValidatesDepends On
exists_bound_of_continuous πŸ“–mathematicalHasCompactMulSupport
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
SeminormedGroup.toGroup
Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedGroup.toPseudoMetricSpace
Real
Real.instLE
Norm.norm
SeminormedGroup.toNorm
β€”Bornology.IsBounded.exists_norm_le'
IsCompact.isBounded
isCompact_range
exists_pos_le_norm πŸ“–mathematicalHasCompactMulSupport
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
NormedAddGroup.toSeminormedAddGroup
Real
Real.instLT
Real.instZero
β€”exists_compact_iff_hasCompactMulSupport
instR1Space
TopologicalSpace.PseudoMetrizableSpace.regularSpace
PseudoEMetricSpace.pseudoMetrizableSpace
Bornology.IsBounded.exists_pos_norm_le
IsCompact.isBounded
add_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Contrapose.contrapose₃
lt_add_of_le_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing

HasCompactSupport

Theorems

NameKindAssumesProvesValidatesDepends On
exists_bound_of_continuous πŸ“–mathematicalHasCompactSupport
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SeminormedAddGroup.toAddGroup
Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
Real
Real.instLE
Norm.norm
SeminormedAddGroup.toNorm
β€”Set.mem_range
Bornology.IsBounded.exists_norm_le
IsCompact.isBounded
isCompact_range
exists_pos_le_norm πŸ“–mathematicalHasCompactSupport
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
NormedAddGroup.toSeminormedAddGroup
Real
Real.instLT
Real.instZero
β€”exists_compact_iff_hasCompactSupport
instR1Space
TopologicalSpace.PseudoMetrizableSpace.regularSpace
PseudoEMetricSpace.pseudoMetrizableSpace
Bornology.IsBounded.exists_pos_norm_le
IsCompact.isBounded
add_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Contrapose.contrapose₃
not_le
lt_add_of_le_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
exists_bound_of_continuousOn πŸ“–mathematicalIsCompact
ContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
Real
Real.instLE
Norm.norm
SeminormedAddGroup.toNorm
β€”Set.mem_image_of_mem
isBounded_iff_forall_norm_le
isBounded
image_of_continuousOn
exists_bound_of_continuousOn' πŸ“–mathematicalIsCompact
ContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedGroup.toPseudoMetricSpace
Real
Real.instLE
Norm.norm
SeminormedGroup.toNorm
β€”Set.mem_image_of_mem
isBounded_iff_forall_norm_le'
isBounded
image_of_continuousOn

NormedAddCommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_iff πŸ“–mathematicalβ€”CauchySeq
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Real
Real.instLT
Norm.norm
SeminormedAddGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
β€”Metric.cauchySeq_iff
dist_eq_norm_sub

NormedCommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_iff πŸ“–mathematicalβ€”CauchySeq
PseudoMetricSpace.toUniformSpace
SeminormedGroup.toPseudoMetricSpace
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Real
Real.instLT
Norm.norm
SeminormedGroup.toNorm
DivInvMonoid.toDiv
Group.toDivInvMonoid
SeminormedGroup.toGroup
β€”dist_eq_norm_div

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
comap_norm_atTop πŸ“–mathematicalβ€”Filter.comap
Real
Norm.norm
SeminormedAddGroup.toNorm
Filter.atTop
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedAddGroup.toPseudoMetricSpace
β€”dist_zero_right
Metric.comap_dist_right_atTop
comap_norm_atTop' πŸ“–mathematicalβ€”Filter.comap
Real
Norm.norm
SeminormedGroup.toNorm
Filter.atTop
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedGroup.toPseudoMetricSpace
β€”dist_one_right
Metric.comap_dist_right_atTop
eventually_cobounded_le_norm πŸ“–mathematicalβ€”Filter.Eventually
Real
Real.instLE
Norm.norm
SeminormedAddGroup.toNorm
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedAddGroup.toPseudoMetricSpace
β€”Filter.Tendsto.eventually_ge_atTop
tendsto_norm_cobounded_atTop
eventually_cobounded_le_norm' πŸ“–mathematicalβ€”Filter.Eventually
Real
Real.instLE
Norm.norm
SeminormedGroup.toNorm
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedGroup.toPseudoMetricSpace
β€”Filter.Tendsto.eventually_ge_atTop
tendsto_norm_cobounded_atTop'
isBounded_iff_forall_norm_le πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedAddGroup.toPseudoMetricSpace
Real
Real.instLE
Norm.norm
SeminormedAddGroup.toNorm
β€”mem_closedBall_zero_iff
Metric.isBounded_iff_subset_closedBall
isBounded_iff_forall_norm_le' πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedGroup.toPseudoMetricSpace
Real
Real.instLE
Norm.norm
SeminormedGroup.toNorm
β€”Metric.isBounded_iff_subset_closedBall
tendsto_norm_atTop_iff_cobounded πŸ“–mathematicalβ€”Filter.Tendsto
Real
Norm.norm
SeminormedAddGroup.toNorm
Filter.atTop
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedAddGroup.toPseudoMetricSpace
β€”comap_norm_atTop
Filter.tendsto_comap_iff
tendsto_norm_atTop_iff_cobounded' πŸ“–mathematicalβ€”Filter.Tendsto
Real
Norm.norm
SeminormedGroup.toNorm
Filter.atTop
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedGroup.toPseudoMetricSpace
β€”comap_norm_atTop'
Filter.tendsto_comap_iff
tendsto_norm_cobounded_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
Norm.norm
SeminormedAddGroup.toNorm
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedAddGroup.toPseudoMetricSpace
Filter.atTop
Real.instPreorder
β€”tendsto_norm_atTop_iff_cobounded
Filter.tendsto_id
tendsto_norm_cobounded_atTop' πŸ“–mathematicalβ€”Filter.Tendsto
Real
Norm.norm
SeminormedGroup.toNorm
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedGroup.toPseudoMetricSpace
Filter.atTop
Real.instPreorder
β€”tendsto_norm_atTop_iff_cobounded'
Filter.tendsto_id
tendsto_norm_cocompact_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
Norm.norm
SeminormedAddGroup.toNorm
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
Filter.atTop
Real.instPreorder
β€”tendsto_norm_cobounded_atTop
Metric.cobounded_eq_cocompact
tendsto_norm_cocompact_atTop' πŸ“–mathematicalβ€”Filter.Tendsto
Real
Norm.norm
SeminormedGroup.toNorm
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedGroup.toPseudoMetricSpace
Filter.atTop
Real.instPreorder
β€”tendsto_norm_cobounded_atTop'
Metric.cobounded_eq_cocompact
tendsto_norm_comp_cofinite_atTop_of_isClosedEmbedding πŸ“–mathematicalTopology.IsClosedEmbedding
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
Filter.Tendsto
Real
Norm.norm
SeminormedAddGroup.toNorm
Filter.cofinite
Filter.atTop
Real.instPreorder
β€”Filter.cocompact_eq_cofinite
Filter.Tendsto.comp
tendsto_norm_cocompact_atTop
Topology.IsClosedEmbedding.tendsto_cocompact
tendsto_norm_comp_cofinite_atTop_of_isClosedEmbedding' πŸ“–mathematicalTopology.IsClosedEmbedding
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedGroup.toPseudoMetricSpace
Filter.Tendsto
Real
Norm.norm
SeminormedGroup.toNorm
Filter.cofinite
Filter.atTop
Real.instPreorder
β€”Filter.cocompact_eq_cofinite
Filter.Tendsto.comp
tendsto_norm_cocompact_atTop'
Topology.IsClosedEmbedding.tendsto_cocompact

---

← Back to Index