Documentation

Mathlib.Analysis.Normed.Group.Bounded

Boundedness in normed groups #

This file rephrases metric boundedness in terms of norms.

Tags #

normed group

theorem Filter.HasBasis.cobounded_of_norm' {E : Type u_2} [SeminormedGroup E] {ฮน : Sort u_5} {p : ฮน โ†’ Prop} {s : ฮน โ†’ Set โ„} (h : atTop.HasBasis p s) :
(Bornology.cobounded E).HasBasis p fun (i : ฮน) => norm โปยน' s i
theorem Filter.HasBasis.cobounded_of_norm {E : Type u_2} [SeminormedAddGroup E] {ฮน : Sort u_5} {p : ฮน โ†’ Prop} {s : ฮน โ†’ Set โ„} (h : atTop.HasBasis p s) :
(Bornology.cobounded E).HasBasis p fun (i : ฮน) => norm โปยน' s i
@[simp]
theorem tendsto_norm_atTop_iff_cobounded' {ฮฑ : Type u_1} {E : Type u_2} [SeminormedGroup E] {f : ฮฑ โ†’ E} {l : Filter ฮฑ} :
@[simp]
theorem tendsto_norm_atTop_iff_cobounded {ฮฑ : Type u_1} {E : Type u_2} [SeminormedAddGroup E] {f : ฮฑ โ†’ E} {l : Filter ฮฑ} :

In a (semi)normed group, inversion x โ†ฆ xโปยน tends to infinity at infinity.

In a (semi)normed group, negation x โ†ฆ -x tends to infinity at infinity.

theorem Bornology.IsBounded.exists_norm_le' {E : Type u_2} [SeminormedGroup E] {s : Set E} :
IsBounded s โ†’ โˆƒ (C : โ„), โˆ€ x โˆˆ s, โ€–xโ€– โ‰ค C

Alias of the forward direction of isBounded_iff_forall_norm_le'.

theorem Bornology.IsBounded.exists_norm_le {E : Type u_2} [SeminormedAddGroup E] {s : Set E} :
IsBounded s โ†’ โˆƒ (C : โ„), โˆ€ x โˆˆ s, โ€–xโ€– โ‰ค C

Alias of the forward direction of isBounded_iff_forall_norm_le.

theorem Bornology.IsBounded.exists_pos_norm_le' {E : Type u_2} [SeminormedGroup E] {s : Set E} (hs : IsBounded s) :
โˆƒ R > 0, โˆ€ x โˆˆ s, โ€–xโ€– โ‰ค R
theorem Bornology.IsBounded.exists_pos_norm_le {E : Type u_2} [SeminormedAddGroup E] {s : Set E} (hs : IsBounded s) :
โˆƒ R > 0, โˆ€ x โˆˆ s, โ€–xโ€– โ‰ค R
theorem Bornology.IsBounded.exists_pos_norm_lt' {E : Type u_2} [SeminormedGroup E] {s : Set E} (hs : IsBounded s) :
โˆƒ R > 0, โˆ€ x โˆˆ s, โ€–xโ€– < R
theorem Bornology.IsBounded.exists_pos_norm_lt {E : Type u_2} [SeminormedAddGroup E] {s : Set E} (hs : IsBounded s) :
โˆƒ R > 0, โˆ€ x โˆˆ s, โ€–xโ€– < R
theorem NormedCommGroup.cauchySeq_iff {ฮฑ : Type u_1} {E : Type u_2} [SeminormedGroup E] [Nonempty ฮฑ] [SemilatticeSup ฮฑ] {u : ฮฑ โ†’ E} :
CauchySeq u โ†” โˆ€ ฮต > 0, โˆƒ (N : ฮฑ), โˆ€ (m : ฮฑ), N โ‰ค m โ†’ โˆ€ (n : ฮฑ), N โ‰ค n โ†’ โ€–u m / u nโ€– < ฮต
theorem NormedAddCommGroup.cauchySeq_iff {ฮฑ : Type u_1} {E : Type u_2} [SeminormedAddGroup E] [Nonempty ฮฑ] [SemilatticeSup ฮฑ] {u : ฮฑ โ†’ E} :
CauchySeq u โ†” โˆ€ ฮต > 0, โˆƒ (N : ฮฑ), โˆ€ (m : ฮฑ), N โ‰ค m โ†’ โˆ€ (n : ฮฑ), N โ‰ค n โ†’ โ€–u m - u nโ€– < ฮต
theorem IsCompact.exists_bound_of_continuousOn' {ฮฑ : Type u_1} {E : Type u_2} [SeminormedGroup E] [TopologicalSpace ฮฑ] {s : Set ฮฑ} (hs : IsCompact s) {f : ฮฑ โ†’ E} (hf : ContinuousOn f s) :
โˆƒ (C : โ„), โˆ€ x โˆˆ s, โ€–f xโ€– โ‰ค C
theorem IsCompact.exists_bound_of_continuousOn {ฮฑ : Type u_1} {E : Type u_2} [SeminormedAddGroup E] [TopologicalSpace ฮฑ] {s : Set ฮฑ} (hs : IsCompact s) {f : ฮฑ โ†’ E} (hf : ContinuousOn f s) :
โˆƒ (C : โ„), โˆ€ x โˆˆ s, โ€–f xโ€– โ‰ค C
theorem HasCompactMulSupport.exists_bound_of_continuous {ฮฑ : Type u_1} {E : Type u_2} [SeminormedGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} (hf : HasCompactMulSupport f) (h'f : Continuous f) :
โˆƒ (C : โ„), โˆ€ (x : ฮฑ), โ€–f xโ€– โ‰ค C
theorem HasCompactSupport.exists_bound_of_continuous {ฮฑ : Type u_1} {E : Type u_2} [SeminormedAddGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} (hf : HasCompactSupport f) (h'f : Continuous f) :
โˆƒ (C : โ„), โˆ€ (x : ฮฑ), โ€–f xโ€– โ‰ค C
theorem Filter.Tendsto.op_one_isBoundedUnder_le' {ฮฑ : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [SeminormedGroup E] [SeminormedGroup F] [SeminormedGroup G] {f : ฮฑ โ†’ E} {g : ฮฑ โ†’ F} {l : Filter ฮฑ} (hf : Tendsto f l (nhds 1)) (hg : IsBoundedUnder (fun (x1 x2 : โ„) => x1 โ‰ค x2) l (Norm.norm โˆ˜ g)) (op : E โ†’ F โ†’ G) (h_op : โˆƒ (A : โ„), โˆ€ (x : E) (y : F), โ€–op x yโ€– โ‰ค A * โ€–xโ€– * โ€–yโ€–) :
Tendsto (fun (x : ฮฑ) => op (f x) (g x)) l (nhds 1)

A helper lemma used to prove that the (scalar or usual) product of a function that tends to one and a bounded function tends to one. This lemma is formulated for any binary operation op : E โ†’ F โ†’ G with an estimate โ€–op x yโ€– โ‰ค A * โ€–xโ€– * โ€–yโ€– for some constant A instead of multiplication so that it can be applied to (*), flip (*), (โ€ข), and flip (โ€ข).

theorem Filter.Tendsto.op_zero_isBoundedUnder_le' {ฮฑ : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [SeminormedAddGroup E] [SeminormedAddGroup F] [SeminormedAddGroup G] {f : ฮฑ โ†’ E} {g : ฮฑ โ†’ F} {l : Filter ฮฑ} (hf : Tendsto f l (nhds 0)) (hg : IsBoundedUnder (fun (x1 x2 : โ„) => x1 โ‰ค x2) l (Norm.norm โˆ˜ g)) (op : E โ†’ F โ†’ G) (h_op : โˆƒ (A : โ„), โˆ€ (x : E) (y : F), โ€–op x yโ€– โ‰ค A * โ€–xโ€– * โ€–yโ€–) :
Tendsto (fun (x : ฮฑ) => op (f x) (g x)) l (nhds 0)

A helper lemma used to prove that the (scalar or usual) product of a function that tends to zero and a bounded function tends to zero. This lemma is formulated for any binary operation op : E โ†’ F โ†’ G with an estimate โ€–op x yโ€– โ‰ค A * โ€–xโ€– * โ€–yโ€– for some constant A instead of multiplication so that it can be applied to (*), flip (*), (โ€ข), and flip (โ€ข).

theorem Filter.Tendsto.op_one_isBoundedUnder_le {ฮฑ : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [SeminormedGroup E] [SeminormedGroup F] [SeminormedGroup G] {f : ฮฑ โ†’ E} {g : ฮฑ โ†’ F} {l : Filter ฮฑ} (hf : Tendsto f l (nhds 1)) (hg : IsBoundedUnder (fun (x1 x2 : โ„) => x1 โ‰ค x2) l (Norm.norm โˆ˜ g)) (op : E โ†’ F โ†’ G) (h_op : โˆ€ (x : E) (y : F), โ€–op x yโ€– โ‰ค โ€–xโ€– * โ€–yโ€–) :
Tendsto (fun (x : ฮฑ) => op (f x) (g x)) l (nhds 1)

A helper lemma used to prove that the (scalar or usual) product of a function that tends to one and a bounded function tends to one. This lemma is formulated for any binary operation op : E โ†’ F โ†’ G with an estimate โ€–op x yโ€– โ‰ค โ€–xโ€– * โ€–yโ€– instead of multiplication so that it can be applied to (*), flip (*), (โ€ข), and flip (โ€ข).

theorem Filter.Tendsto.op_zero_isBoundedUnder_le {ฮฑ : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [SeminormedAddGroup E] [SeminormedAddGroup F] [SeminormedAddGroup G] {f : ฮฑ โ†’ E} {g : ฮฑ โ†’ F} {l : Filter ฮฑ} (hf : Tendsto f l (nhds 0)) (hg : IsBoundedUnder (fun (x1 x2 : โ„) => x1 โ‰ค x2) l (Norm.norm โˆ˜ g)) (op : E โ†’ F โ†’ G) (h_op : โˆ€ (x : E) (y : F), โ€–op x yโ€– โ‰ค โ€–xโ€– * โ€–yโ€–) :
Tendsto (fun (x : ฮฑ) => op (f x) (g x)) l (nhds 0)

A helper lemma used to prove that the (scalar or usual) product of a function that tends to zero and a bounded function tends to zero. This lemma is formulated for any binary operation op : E โ†’ F โ†’ G with an estimate โ€–op x yโ€– โ‰ค โ€–xโ€– * โ€–yโ€– instead of multiplication so that it can be applied to (*), flip (*), (โ€ข), and flip (โ€ข).

theorem Continuous.bounded_above_of_compact_support {ฮฑ : Type u_1} {E : Type u_2} [NormedAddGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ†’ E} (hf : Continuous f) (h : HasCompactSupport f) :
โˆƒ (C : โ„), โˆ€ (x : ฮฑ), โ€–f xโ€– โ‰ค C
theorem HasCompactMulSupport.exists_pos_le_norm {ฮฑ : Type u_1} {E : Type u_2} [NormedAddGroup ฮฑ] {f : ฮฑ โ†’ E} [One E] (hf : HasCompactMulSupport f) :
โˆƒ (R : โ„), 0 < R โˆง โˆ€ (x : ฮฑ), R โ‰ค โ€–xโ€– โ†’ f x = 1
theorem HasCompactSupport.exists_pos_le_norm {ฮฑ : Type u_1} {E : Type u_2} [NormedAddGroup ฮฑ] {f : ฮฑ โ†’ E} [Zero E] (hf : HasCompactSupport f) :
โˆƒ (R : โ„), 0 < R โˆง โˆ€ (x : ฮฑ), R โ‰ค โ€–xโ€– โ†’ f x = 0