Documentation Verification Report

Constructions

πŸ“ Source: Mathlib/Analysis/Normed/Group/Constructions.lean

Statistics

MetricCount
DefinitionsnormedAddCommGroup, normedAddGroup, seminormedAddGroup, seminormedCommGroup, toNNNorm, toNorm, instNormedAddCommGroup, instNormedAddGroup, instSeminormedAddCommGroup, instSeminormedAddGroup, normedCommGroup, normedGroup, seminormedAddCommGroup, seminormedGroup, toNNNorm, toNorm, normedAddCommGroup, normedAddGroup, normedCommGroup, normedGroup, seminormedAddCommGroup, seminormedAddGroup, seminormedCommGroup, seminormedGroup, toNNNorm, toNorm, normedAddCommGroup, normedAddCommGroup, normedAddGroup, normedCommGroup, normedGroup, seminormedAddCommGroup, seminormedAddGroup, seminormedCommGroup, seminormedGroup, normedAddCommGroup, normedAddGroup, normedCommGroup, normedGroup, seminormedAddCommGroup, seminormedAddGroup, seminormedCommGroup, seminormedGroup, toNorm, nnnorm, norm, normedAddCommGroup, normedAddGroup, normedCommGroup, normedGroup, seminormedAddCommGroup, seminormedAddGroup, seminormedCommGroup, seminormedGroup
54
Theoremsnnnorm_op, nnnorm_unop, norm_op, norm_unop, norm_eq_zero, enorm_single, nnnorm_def, nnnorm_def', nnnorm_single, norm_def, norm_def', norm_single, sum_nnnorm_apply_le_nnnorm, sum_nnnorm_apply_le_nnnorm', sum_norm_apply_le_norm, sum_norm_apply_le_norm', nnnorm_def, nnnorm_def', nnnorm_mk, nnnorm_mk', norm_def, norm_mk, nnnorm_def, nnnorm_down, nnnorm_up, norm_def, norm_down, norm_up, nnnorm_le_pi_nnnorm, nnnorm_le_pi_nnnorm', nnnorm_ofAdd, nnnorm_ofDual, nnnorm_ofMul, nnnorm_toAdd, nnnorm_toDual, nnnorm_toMul, norm_fst_le, norm_le_pi_norm, norm_le_pi_norm', norm_ofAdd, norm_ofDual, norm_ofMul, norm_prod_le_iff, norm_snd_le, norm_toAdd, norm_toDual, norm_toMul, pi_nnnorm_const, pi_nnnorm_const', pi_nnnorm_const_le, pi_nnnorm_const_le', pi_nnnorm_le_iff, pi_nnnorm_le_iff', pi_nnnorm_lt_iff, pi_nnnorm_lt_iff', pi_norm_const, pi_norm_const', pi_norm_const_le, pi_norm_const_le', pi_norm_le_iff_of_nonempty, pi_norm_le_iff_of_nonempty', pi_norm_le_iff_of_nonneg, pi_norm_le_iff_of_nonneg', pi_norm_lt_iff, pi_norm_lt_iff'
65
Total119

Additive

Definitions

NameCategoryTheorems
normedAddCommGroup πŸ“–CompOpβ€”
normedAddGroup πŸ“–CompOpβ€”
seminormedAddGroup πŸ“–CompOpβ€”
seminormedCommGroup πŸ“–CompOpβ€”
toNNNorm πŸ“–CompOp
2 mathmath: nnnorm_toMul, nnnorm_ofMul
toNorm πŸ“–CompOp
2 mathmath: norm_ofMul, norm_toMul

MulOpposite

Definitions

NameCategoryTheorems
instNormedAddCommGroup πŸ“–CompOp
1 mathmath: OrthonormalBasis.toBasis_mulOpposite
instNormedAddGroup πŸ“–CompOpβ€”
instSeminormedAddCommGroup πŸ“–CompOp
6 mathmath: normOneClass, Module.Basis.mulOpposite_is_orthonormal_iff, toLinearEquiv_opLinearIsometryEquiv, opLinearIsometryEquiv_symm_apply, opLinearIsometryEquiv_apply, toContinuousLinearEquiv_opLinearIsometryEquiv
instSeminormedAddGroup πŸ“–CompOp
5 mathmath: DoubleCentralizer.nnnorm_def', nnnorm_unop, norm_unop, nnnorm_op, norm_op

Theorems

NameKindAssumesProvesValidatesDepends On
nnnorm_op πŸ“–mathematicalβ€”NNNorm.nnnorm
MulOpposite
SeminormedAddGroup.toNNNorm
instSeminormedAddGroup
op
β€”β€”
nnnorm_unop πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
unop
MulOpposite
instSeminormedAddGroup
β€”β€”
norm_op πŸ“–mathematicalβ€”Norm.norm
MulOpposite
SeminormedAddGroup.toNorm
instSeminormedAddGroup
op
β€”β€”
norm_unop πŸ“–mathematicalβ€”Norm.norm
SeminormedAddGroup.toNorm
unop
MulOpposite
instSeminormedAddGroup
β€”β€”

Multiplicative

Definitions

NameCategoryTheorems
normedCommGroup πŸ“–CompOpβ€”
normedGroup πŸ“–CompOpβ€”
seminormedAddCommGroup πŸ“–CompOpβ€”
seminormedGroup πŸ“–CompOpβ€”
toNNNorm πŸ“–CompOp
2 mathmath: nnnorm_ofAdd, nnnorm_toAdd
toNorm πŸ“–CompOp
2 mathmath: norm_ofAdd, norm_toAdd

OrderDual

Definitions

NameCategoryTheorems
normedAddCommGroup πŸ“–CompOp
1 mathmath: instHasSolidNorm
normedAddGroup πŸ“–CompOpβ€”
normedCommGroup πŸ“–CompOpβ€”
normedGroup πŸ“–CompOpβ€”
seminormedAddCommGroup πŸ“–CompOpβ€”
seminormedAddGroup πŸ“–CompOpβ€”
seminormedCommGroup πŸ“–CompOpβ€”
seminormedGroup πŸ“–CompOpβ€”
toNNNorm πŸ“–CompOp
2 mathmath: nnnorm_toDual, nnnorm_ofDual
toNorm πŸ“–CompOp
2 mathmath: norm_ofDual, norm_toDual

PUnit

Definitions

NameCategoryTheorems
normedAddCommGroup πŸ“–CompOp
6 mathmath: Manifold.IsImmersionAtOfComplement.ofOpen, norm_eq_zero, Manifold.IsImmersionOfComplement.ofOpen, Manifold.IsImmersionAtOfComplement.of_opens, Manifold.IsImmersionOfComplement.id, Manifold.IsImmersionOfComplement.of_opens

Theorems

NameKindAssumesProvesValidatesDepends On
norm_eq_zero πŸ“–mathematicalβ€”Norm.norm
NormedAddCommGroup.toNorm
normedAddCommGroup
Real
Real.instZero
β€”β€”

Pi

Definitions

NameCategoryTheorems
normedAddCommGroup πŸ“–CompOp
115 mathmath: NumberField.mixedEmbedding.fundamentalDomain_integerLattice, MeasureTheory.eval_integral, PiLp.contDiff_toLp, ContinuousMultilinearMap.cpolynomialOn, ZSpan.volume_real_fundamentalDomain, ContinuousMultilinearMap.analyticAt_uncurry_compContinuousLinearMap, ContinuousMultilinearMap.analyticAt_uncurry_of_linear, FormalMultilinearSeries.radius_pi_eq_iInf, ZLattice.covolume_eq_det_inv, hasFPowerSeriesOnBall_pi_iff, ContinuousMultilinearMap.changeOrigin_toFormalMultilinearSeries, analyticWithinAt_pi_iff, ContinuousMultilinearMap.contDiffAt, Module.Basis.parallelepiped_basisFun, ContinuousLinearMap.cpolynomialOn_uncurry_of_multilinear, analyticOnNhd_pi_iff, contDiffAt_pi', ContinuousLinearMap.hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, contDiff_apply, ZLattice.covolume.tendsto_card_div_pow, NumberField.Units.instZLattice_unitLattice, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, ZLattice.covolume_div_covolume_eq_relIndex, contMDiffWithinAt_pi_space, contDiff_update, ZSpan.volume_fundamentalDomain, hasFTaylorSeriesUpToOn_pi', ContinuousMultilinearMap.hasFTaylorSeriesUpTo_iteratedFDeriv, contMDiffOn_pi_space, ContinuousLinearMap.analyticWithinAt_uncurry_of_multilinear, AnalyticOn.pi, ContinuousLinearMap.cpolyomialOn_uncurry_of_multilinear, ContinuousMultilinearMap.hasFiniteFPowerSeriesOnBall, ContinuousMultilinearMap.analyticAt, NumberField.mixedEmbedding.covolume_idealLattice, ContinuousMultilinearMap.cpolyomialOn_uncurry_of_linear, contDiff_pi', HasFPowerSeriesWithinAt.pi, ContinuousMultilinearMap.contDiff, NumberField.Units.regOfFamily_of_isMaxRank, ContinuousLinearMap.cpolynomialAt_uncurry_of_multilinear, SmoothBumpCovering.embeddingPiTangent_injective_mfderiv, contDiff_apply_apply, ContinuousMultilinearMap.iteratedFDeriv_eq, ContinuousMultilinearMap.cpolynomialAt_uncurry_of_linear, NumberField.mixedEmbedding.fundamentalDomain_stdBasis, AnalyticWithinAt.pi, contDiffAt_apply, SmoothBumpCovering.embeddingPiTangent_ker_mfderiv, ContinuousMultilinearMap.cpolynomialAt, norm_single, ProbabilityTheory.iIndepFun_iff_charFunDual_pi, NumberField.mixedEmbedding.covolume_integerLattice, ContinuousMultilinearMap.analyticOn_uncurry_of_linear, hasFPowerSeriesAt_pi_iff, ContinuousLinearMap.analyticOnNhd_uncurry_of_multilinear, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIntegerLattice, PiLp.analyticOn_ofLp, ContinuousMultilinearMap.norm_iteratedFDeriv_le, ZLattice.volume_image_eq_volume_div_covolume, PiLp.analyticOn_toLp, SmoothBumpCovering.embeddingPiTangent_injOn, hasFPowerSeriesWithinAt_pi_iff, MeasureTheory.charFunDual_eq_pi_iff, ContinuousMultilinearMap.changeOriginSeries_support, ZLattice.covolume.tendsto_card_le_div, HasFPowerSeriesOnBall.pi, analyticOn_pi_iff, SmoothBumpCovering.comp_embeddingPiTangent_mfderiv, ContinuousMultilinearMap.analyticOn, contDiff_single, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIdealLattice, SmoothBumpCovering.embeddingPiTangent_injective, PiLp.contDiff_ofLp, ContinuousMultilinearMap.analyticOnNhd, ContinuousMultilinearMap.analyticWithinAt_uncurry_of_linear, hasFPowerSeriesWithinOnBall_pi_iff, ZSpan.fundamentalDomain_pi_basisFun, WithCStarModule.norm_equiv_le_norm_pi, contDiffWithinAt_pi, AnalyticOnNhd.pi, ContinuousMultilinearMap.cpolynomialOn_uncurry_compContinuousLinearMap, ContinuousMultilinearMap.analyticWithinAt_uncurry_compContinuousLinearMap, HasFPowerSeriesAt.pi, OrderedFinpartition.norm_compAlongOrderedFinpartition_sub_compAlongOrderedFinpartition_le, contDiffOn_pi, ContinuousMultilinearMap.analyticWithinAt, ContinuousLinearMap.analyticOn_uncurry_of_multilinear, NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis, AnalyticAt.pi, contMDiff_pi_space, MeasureTheory.charFunDual_pi, ContinuousMultilinearMap.analyticOnNhd_uncurry_compContinuousLinearMap, FormalMultilinearSeries.le_radius_pi, contDiffAt_pi, FormalMultilinearSeries.radius_pi_le, ContinuousMultilinearMap.cpolynomialAt_uncurry_compContinuousLinearMap, HasFPowerSeriesWithinOnBall.pi, contMDiffAt_pi_space, SmoothBumpCovering.embeddingPiTangent_coe, ContinuousMultilinearMap.analyticOnNhd_uncurry_of_linear, NumberField.Units.basisOfIsMaxRank_fundSystem, AnalyticOnNhd.eval_mvPolynomial, ContinuousLinearMap.analyticAt_uncurry_of_multilinear, ContinuousMultilinearMap.analyticOn_uncurry_compContinuousLinearMap, contDiff_pi, analyticAt_pi_iff, contDiffOn_apply, NumberField.mixedEmbedding.volume_fundamentalDomain_stdBasis, hasFTaylorSeriesUpToOn_pi, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne, ZLattice.covolume_eq_det, contDiffOn_pi'
normedAddGroup πŸ“–CompOpβ€”
normedCommGroup πŸ“–CompOpβ€”
normedGroup πŸ“–CompOpβ€”
seminormedAddCommGroup πŸ“–CompOp
38 mathmath: Matrix.linfty_opNorm_diagonal, Matrix.norm_diagonal, ContinuousMultilinearMap.norm_iteratedFDerivComponent_le, Asymptotics.isBigOWith_pi, Matrix.norm_def, PiLp.norm_ofLp, ContinuousAlternatingMap.opNNNorm_pi, ContinuousAlternatingMap.piLIE_apply_apply, Asymptotics.isBigO_pi, Matrix.linfty_opNNNorm_eq_opNNNorm, ContinuousMultilinearMap.norm_image_sub_le, Matrix.linfty_opNNNorm_toMatrix, ContinuousMultilinearMap.opNorm_pi, AlternatingMap.norm_image_sub_le_of_bound, contDiff_apply_apply, Matrix.norm_replicateRow, ContinuousLinearMap.norm_single, MultilinearMap.norm_image_sub_le_of_bound, ContinuousAlternatingMap.piLIE_symm_apply_apply, ContinuousMultilinearMap.norm_iteratedFDeriv_le, ContinuousMultilinearMap.norm_iteratedFDeriv_le', Matrix.linfty_opNorm_replicateCol, ContinuousMultilinearMap.piβ‚—α΅’_symm_apply, Matrix.linfty_opNorm_toMatrix, ContinuousMultilinearMap.opNNNorm_pi, MeasureTheory.lintegral_pow_le_pow_lintegral_fderiv_aux, Matrix.linfty_opNorm_eq_opNorm, ContinuousLinearMap.norm_pi_le_of_le, ContinuousLinearMap.norm_single_le_one, ContinuousMultilinearMap.piβ‚—α΅’_apply, Module.Basis.opNNNorm_le, Module.Basis.opNorm_le, ContinuousAlternatingMap.opNorm_pi, PiLp.norm_toLp, Matrix.norm_replicateCol, ContinuousAlternatingMap.norm_image_sub_le, normOneClass, Asymptotics.isLittleO_pi
seminormedAddGroup πŸ“–CompOp
36 mathmath: pi_nnnorm_le_iff, ContinuousAlternatingMap.opNNNorm_pi, nnnorm_single, MeasureTheory.Integrable.of_eval, Matrix.linfty_opNNNorm_mulVec, pi_nnnorm_lt_iff, pi_nnnorm_const, pi_norm_le_iff_of_nonneg, norm_le_pi_norm, enorm_single, Matrix.nnnorm_replicateRow, sum_nnnorm_apply_le_nnnorm, sum_norm_apply_le_norm, pi_norm_lt_iff, nnnorm_le_pi_nnnorm, NumberField.canonicalEmbedding.nnnorm_eq, norm_def, PiLp.nnnorm_toLp, MeasureTheory.memLp_pi_iff, instNormSMulClass, ContinuousMultilinearMap.opNNNorm_pi, Matrix.linfty_opNNNorm_replicateCol, nnnorm_def, pi_norm_le_iff_of_nonempty, MeasureTheory.MemLp.of_eval, pi_norm_const, Matrix.nnnorm_diagonal, MeasureTheory.integrable_pi_iff, Matrix.l2_opNNNorm_diagonal, Matrix.nnnorm_def, pi_nnnorm_const_le, Matrix.linfty_opNNNorm_diagonal, NumberField.mixedEmbedding.nnnorm_eq_sup_normAtPlace, PiLp.nnnorm_ofLp, Matrix.nnnorm_replicateCol, pi_norm_const_le
seminormedCommGroup πŸ“–CompOpβ€”
seminormedGroup πŸ“–CompOp
15 mathmath: pi_nnnorm_lt_iff', norm_def', pi_nnnorm_const', sum_norm_apply_le_norm', nnnorm_def', pi_nnnorm_le_iff', sum_nnnorm_apply_le_nnnorm', pi_norm_const_le', pi_nnnorm_const_le', pi_norm_le_iff_of_nonneg', norm_le_pi_norm', pi_norm_const', pi_norm_lt_iff', nnnorm_le_pi_nnnorm', pi_norm_le_iff_of_nonempty'

Theorems

NameKindAssumesProvesValidatesDepends On
enorm_single πŸ“–mathematicalβ€”ENorm.enorm
NNNorm.toENorm
SeminormedAddGroup.toNNNorm
seminormedAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”nnnorm_single
nnnorm_def πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
seminormedAddGroup
Finset.sup
NNReal
instSemilatticeSupNNReal
NNReal.instOrderBot
Finset.univ
β€”norm_nonneg
nnnorm_def' πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedGroup.toNNNorm
seminormedGroup
Finset.sup
NNReal
instSemilatticeSupNNReal
NNReal.instOrderBot
Finset.univ
β€”norm_nonneg'
nnnorm_single πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
seminormedAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”apply_single
nnnorm_zero
nnnorm_def
single_apply
Finset.sup_ite
Finset.filter_eq'
Finset.sup_singleton
sup_of_le_left
NNReal.instCanonicallyOrderedAdd
norm_def πŸ“–mathematicalβ€”Norm.norm
SeminormedAddGroup.toNorm
seminormedAddGroup
NNReal.toReal
Finset.sup
NNReal
instSemilatticeSupNNReal
NNReal.instOrderBot
Finset.univ
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
β€”β€”
norm_def' πŸ“–mathematicalβ€”Norm.norm
SeminormedGroup.toNorm
seminormedGroup
NNReal.toReal
Finset.sup
NNReal
instSemilatticeSupNNReal
NNReal.instOrderBot
Finset.univ
NNNorm.nnnorm
SeminormedGroup.toNNNorm
β€”β€”
norm_single πŸ“–mathematicalβ€”Norm.norm
NormedAddCommGroup.toNorm
normedAddCommGroup
single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”nnnorm_single
sum_nnnorm_apply_le_nnnorm πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Finset.univ
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
seminormedAddGroup
β€”Eq.trans_le
NNReal.coe_sum
sum_norm_apply_le_norm
sum_nnnorm_apply_le_nnnorm' πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Finset.univ
NNNorm.nnnorm
SeminormedGroup.toNNNorm
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
seminormedGroup
β€”Eq.trans_le
NNReal.coe_sum
sum_norm_apply_le_norm'
sum_norm_apply_le_norm πŸ“–mathematicalβ€”Real
Real.instLE
Finset.sum
Real.instAddCommMonoid
Finset.univ
Norm.norm
SeminormedAddGroup.toNorm
AddMonoid.toNatSMul
Real.instAddMonoid
Fintype.card
seminormedAddGroup
β€”Finset.sum_le_card_nsmul
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
norm_le_pi_norm
sum_norm_apply_le_norm' πŸ“–mathematicalβ€”Real
Real.instLE
Finset.sum
Real.instAddCommMonoid
Finset.univ
Norm.norm
SeminormedGroup.toNorm
AddMonoid.toNatSMul
Real.instAddMonoid
Fintype.card
seminormedGroup
β€”Finset.sum_le_card_nsmul
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
norm_le_pi_norm'

Prod

Definitions

NameCategoryTheorems
normedAddCommGroup πŸ“–CompOp
366 mathmath: contDiffAt_snd, TangentBundle.tangentMap_tangentBundle_pure, contMDiff_prod_assoc, NumberField.mixedEmbedding.fundamentalDomain_integerLattice, instLieGroup, Bundle.ContMDiffRiemannianMetric.contMDiff, Bundle.mdifferentiableAt_proj, contDiff_fst, Trivialization.mdifferentiableAt_section_iff, ContinuousLinearMap.analyticWithinAt_bilinear, ContMDiffMul.prod, ModelWithCorners.range_prod, Bundle.contMDiffOn_zeroSection, ContinuousMultilinearMap.analyticAt_uncurry_compContinuousLinearMap, MDifferentiableAt.mfderiv_prod, mdifferentiableWithinAt_totalSpace, contMDiffWithinAt_vectorSpace_iff_contDiffWithinAt, ContMDiffOn.prodMk, ContinuousMultilinearMap.analyticAt_uncurry_of_linear, analyticWithinAt_snd, contDiff_prodAssoc_symm, ContDiffBumpBase.smooth, MDifferentiableOn.prodMk_space, Manifold.IsImmersionOfComplement.prodMap, contMDiff_addInvariantVectorField, Trivialization.mdifferentiableOn_section_baseSet_iff, ContinuousLinearMap.fpowerSeriesBilinear_apply_zero, HasMFDerivWithinAt.prodMk, contDiffWithinAt_fst, ContMDiffAdd.prod, ContMDiffMul.contMDiff_mul, Bundle.contMDiffWithinAt_zeroSection, mdifferentiableOn_snd, contMDiff_mul, contMDiff_mulInvariantVectorField, contMDiffWithinAt_snd, contMDiffWithinAt_prod_iff, UniqueMDiffOn.prod, IsLocalFrameOn.contMDiffAt_of_coeff, contMDiff_equivTangentBundleProd_symm, contDiff_prodAssoc, mdifferentiableWithinAt_section, Trivialization.contMDiffAt_iff, MDifferentiableWithinAt.prodMk_space, Trivialization.contMDiffOn_symm_trans, ContinuousLinearMap.cpolynomialOn_uncurry_of_multilinear, ContDiffAt.prodMap, ContinuousLinearMap.hasFiniteFPowerSeriesOnBall_uncurry_of_multilinear, Trivialization.contMDiff_iff, ContMDiffAdd.contMDiff_add, Manifold.IsSmoothEmbedding.prodMap, ContDiffAt.fst'', Trivialization.contMDiffOn_section_iff, Manifold.IsImmersionAtOfComplement.prodMap, Diffeomorph.coe_prodCongr, hasMFDerivAt_fst, writtenInExtChart_prod, Bundle.contMDiffAt_zeroSection, ModelWithCorners.prod_target, contMDiffAt_mulInvariantVectorField, MDifferentiableAt.clm_prodMap, MDifferentiable.prodMap, equivTangentBundleProd_apply, contMDiffWithinAt_prod_module_iff, ContinuousLinearMap.analyticOn_bilinear, HasMFDerivWithinAt.prodMap, mdifferentiableAt_addInvariantVectorField, ContDiff.prodMk, ContMDiff.contMDiff_tangentMap, MeasureTheory.charFunDual_prod, Module.Basis.prod_addHaar, mdifferentiableAt_fst, analyticOnNhd_snd, MDifferentiableOn.prodMk, MDifferentiableAt.prodMap', NumberField.mixedEmbedding.fundamentalDomain_idealLattice, AnalyticWithinAt.prod, ContMDiffAt.prodMap, HasFPowerSeriesWithinOnBall.prod, mdifferentiableAt_totalSpace, mdifferentiableOn_fst, mdifferentiable_mulInvariantVectorField, contDiff_prodMk_right, contDiffOn_fst, mdifferentiableOn_prod_module_iff, ContDiff.prodMap, ContDiffWithinAt.prodMap, MDifferentiableAt.prodMk, analyticAt_smul, Diffeomorph.prodCongr_symm, Trivialization.mdifferentiableAt_totalSpace_iff, MeasureTheory.charFunDual_eq_prod_iff, ContDiff.fst', mdifferentiableAt_hom_bundle, IsLocalFrameOn.mdifferentiableAt_of_coeff_aux, mdifferentiable_fst, ContDiffPointwiseHolderAt.snd, modelWithCorners_prod_coe, ContinuousLinearMap.analyticWithinAt_uncurry_of_multilinear, Bundle.TotalSpace.isManifold, IsBoundedBilinearMap.contDiff, contMDiff_vectorSpace_iff_contDiff, mdifferentiableAt_snd, mfderiv_prodMap, ContMDiffWithinAt.prodMk_space, UniqueMDiffWithinAt.bundle_preimage', AnalyticAt.prod, IsContMDiffRiemannianBundle.exists_contMDiff, ModelWithCorners.prod_symm_apply, contMDiff_snd, contMDiffAt_prod_iff, MDifferentiableOn.clm_prodMap, tangentMap_prodSnd, ContinuousLinearMap.cpolyomialOn_uncurry_of_multilinear, ContMDiffAt.prodMk_space, HasMFDerivAt.prodMap, IsLocalFrameOn.mdifferentiableOn_of_coeff, ModelWithCorners.prod_source, hasMFDerivWithinAt_fst, WithLp.contDiff_toLp, snd_integral, NumberField.mixedEmbedding.covolume_idealLattice, MDifferentiableOn.prodMap, ContinuousMultilinearMap.cpolyomialOn_uncurry_of_linear, IsContDiffImplicitAt.implicitFunction_apply, mdifferentiableAt_prod_module_iff, swap_integral, Trivialization.contMDiffOn_localFrame_baseSet, ContinuousLinearMap.hasFPowerSeriesOnBall_bilinear, ContDiffPointwiseHolderAt.prodMk, ContDiffWithinAt.prodMap', modelWithCorners_prod_coe_symm, IsContDiffImplicitAt.implicitFunctionData_pt, MDifferentiable.prodMk_space, contMDiff_smul, Bundle.mdifferentiableWithinAt_proj, IsLocalFrameOn.contMDiffOn, ContinuousLinearMap.cpolynomialAt_uncurry_of_multilinear, MDifferentiableWithinAt.prodMk, Bundle.contMDiffWithinAt_totalSpace, Diffeomorph.coe_prodComm, Bundle.mdifferentiableOn_proj, ContMDiffOn.prodMk_space, SmoothBumpCovering.embeddingPiTangent_injective_mfderiv, ContinuousLinearMap.analyticOnNhd_bilinear, ContinuousMultilinearMap.cpolynomialAt_uncurry_of_linear, equivTangentBundleProd_symm_apply_snd, WithLp.contDiff_ofLp, iteratedFDerivWithin_prodMk, Module.Basis.prod_parallelepiped, IsLocalFrameOn.contMDiffAt, contMDiffAt_hom_bundle, ContMDiffOn.prodMap, ContMDiffRing.contMDiff_mul, contMDiff_prod_iff, FiberBundle.extChartAt, NumberField.mixedEmbedding.fundamentalDomain_stdBasis, mfderiv_prod_right, MDifferentiable.clm_prodMap, SmoothBumpCovering.embeddingPiTangent_ker_mfderiv, IsContDiffImplicitAt.implicitFunctionData_rightFun_apply, analyticAt_fst, Bundle.contMDiffWithinAt_proj, ModelWithCorners.boundary_of_boundaryless_left, modelWithCornersSelf_prod, Bundle.contMDiffAt_totalSpace, analyticWithinAt_fst, MDifferentiableAt.prodMk_space, WithLp.analyticOn_toLp, ContDiffAt.snd', contDiff_add, Trivialization.contMDiffOn_section_baseSet_iff, NumberField.mixedEmbedding.covolume_integerLattice, UniqueMDiffOn.tangentBundle_proj_preimage, MeasureTheory.average_pair, mdifferentiable_snd, mdifferentiableAt_prod_iff, MDifferentiable.prodMk, OpenPartialHomeomorph.extend_prod, contMDiffWithinAt_fst, ContinuousMultilinearMap.analyticOn_uncurry_of_linear, Bundle.contMDiffOn_proj, ContMDiffWithinAt.prodMk, Bundle.contMDiff_proj, HasFPowerSeriesWithinAt.prod, contMDiffOn_fst, ContinuousLinearMap.analyticOnNhd_uncurry_of_multilinear, contDiffAt_inner, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIntegerLattice, contMDiffOn_prod_iff, ContinuousLinearMap.hasFPowerSeriesAt_bilinear, contMDiffAt_section_of_mem_baseSet, Manifold.IsImmersionAt.prodMap, IsManifold.prod, HasFTaylorSeriesUpToOn.prodMk, mfderivWithin_prodMap, integral_pair, SmoothBumpCovering.embeddingPiTangent_injOn, UniqueMDiffWithinAt.bundle_preimage, contMDiffAt_vectorSpace_iff_contDiffAt, Manifold.IsImmersion.prodMap, Bundle.mdifferentiableWithinAt_zeroSection, mfderiv_snd, ContMDiffAt.clm_prodMap, mdifferentiable_addInvariantVectorField, Trivialization.continuousLinearEquivAt_prod, ContDiffAt.prodMap', modelWithCorners_prod_toPartialEquiv, fst_integral, SmoothBumpCovering.comp_embeddingPiTangent_mfderiv, Trivialization.mdifferentiableWithinAt_section_iff, ExistsContDiffBumpBase.y_smooth, Bundle.contMDiff_zeroSection, contDiff_inner, FiberBundle.extChartAt_target, IsContDiffImplicitAt.contDiffAt, contMDiffAt_localFrame_of_mem, mdifferentiableWithinAt_snd, mfderiv_prodMk, hasMFDerivWithinAt_snd, contMDiff_prod_module_iff, mdifferentiableAt_section, Bundle.mdifferentiable_proj, ModelWithCorners.boundary_of_boundaryless_right, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIdealLattice, ModelWithCorners.range_eq_univ_prod, ModelWithCorners.prod_apply, ContMDiff.clm_prodMap, SmoothBumpCovering.embeddingPiTangent_injective, ContMDiffSection.contMDiff, contDiff_mul, IsManifold.mem_maximalAtlas_prod, analyticOnNhd_fst, ContDiffAt.fst', contMDiff_equivTangentBundleProd, ContinuousMultilinearMap.analyticWithinAt_uncurry_of_linear, HasFPowerSeriesOnBall.prod, Trivialization.contMDiffWithinAt_iff, UniqueMDiffOn.bundle_preimage, Bundle.contMDiffAt_section, ModelWithCorners.boundary_prod, ContinuousLinearMap.fpowerSeriesBilinear_radius, contDiff_smul, equivTangentBundleProd_eq_tangentMap_prod_tangentMap, contDiffOn_snd, ContinuousMultilinearMap.cpolynomialOn_uncurry_compContinuousLinearMap, mdifferentiable_prod_iff, ContinuousMultilinearMap.analyticWithinAt_uncurry_compContinuousLinearMap, mdifferentiableOn_prod_iff, mdifferentiableAt_mulInvariantVectorField, mfderivWithin_prodMk, ImplicitFunctionData.contDiff_implicitFunction, contMDiffAt_prod_module_iff, Trivialization.mdifferentiableOn_section_iff, IsContDiffImplicitAt.implicitFunctionData_rightFun_pt, ContMDiffAt.prodMap', iteratedFDeriv_prodMk, IsContDiffImplicitAt.implicitFunctionData_leftFun_apply, tangentMap_prodFst, ContMDiffOn.contMDiffOn_tangentMapWithin, ContMDiffWithinAt.prodMap', mdifferentiableWithinAt_fst, Trivialization.contMDiffAt_section_iff, IsLocalFrameOn.contMDiffOn_of_coeff, ModelWithCorners.BoundarylessManifold.prod, ContinuousLinearMap.analyticOn_uncurry_of_multilinear, contMDiff_add, HasFPowerSeriesAt.prod, Diffeomorph.prodComm_symm, instLieAddGroup, HasMFDerivAt.prodMk, ContDiff.contDiff_fderiv_apply, Trivialization.contMDiffOn_symm, FormalMultilinearSeries.radius_prod_eq_min, analyticAt_mul, NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis, ContMDiffAt.prodMk, Bundle.contMDiffAt_proj, Trivialization.contMDiffOn_iff, contMDiffAt_addInvariantVectorField, contMDiff_tangentBundleModelSpaceHomeomorph, ContMDiffWithinAt.clm_prodMap, mdifferentiableWithinAt_prod_module_iff, hasMFDerivAt_snd, ContDiff.snd', MDifferentiableWithinAt.prodMap, ContinuousMultilinearMap.analyticOnNhd_uncurry_compContinuousLinearMap, Bundle.contMDiffWithinAt_section, Bundle.mdifferentiableOn_zeroSection, Trivialization.mdifferentiableWithinAt_totalSpace_iff, ContMDiffSection.mdifferentiable', contMDiff_tangentBundleModelSpaceHomeomorph_symm, IsContDiffImplicitAt.implicitFunction_def, mfderiv_fst, ContDiffOn.prodMk, ContMDiffSection.mdifferentiableAt, contDiffWithinAt_snd, ContinuousMultilinearMap.cpolynomialAt_uncurry_compContinuousLinearMap, ContMDiffOn.clm_prodMap, Bundle.Prod.contMDiffVectorBundle, AnalyticOn.prod, UniqueMDiffWithinAt.prod, mdifferentiable_prod_module_iff, equivTangentBundleProd_symm_apply_proj, ContMDiffSection.mdifferentiable, contDiff_snd, ContMDiff.prodMk_space, ContMDiffWithinAt.prodMap, ContDiffWithinAt.prodMk, Bundle.mdifferentiable_zeroSection, contMDiffAt_fst, mdifferentiableWithinAt_prod_iff, IsLocalFrameOn.mdifferentiableAt_of_coeff, ContinuousLinearMap.analyticAt_bilinear, contDiffOn_fderivWithin_apply, ContDiffAt.prodMk, tangentMap_prod_right, contMDiffOn_vectorSpace_iff_contDiffOn, ContDiffOn.prodMap, contDiffAt_fst, tangentMap_prod_left, SmoothBumpCovering.embeddingPiTangent_coe, ContMDiffSection.contMDiff_toFun, ContinuousMultilinearMap.analyticOnNhd_uncurry_of_linear, contDiffGroupoid_prod, ModelWithCorners.interior_prod, contMDiffOn_snd, ContinuousLinearMap.analyticAt_uncurry_of_multilinear, mfderiv_prod_left, ContinuousMultilinearMap.analyticOn_uncurry_compContinuousLinearMap, MDifferentiableWithinAt.clm_prodMap, contMDiffOn_prod_module_iff, ContDiffPointwiseHolderAt.fst, MDifferentiableWithinAt.prodMap', mdifferentiableWithinAt_hom_bundle, IsLocalFrameOn.contMDiffAt_of_coeff_aux, Trivialization.contMDiffOn, ContDiffAt.snd'', contMDiffOn_section_of_mem_baseSetβ‚€, Real.contDiffAt_rpow_of_ne, contMDiff_fst, Bundle.mdifferentiableAt_zeroSection, boundary_product, contDiff_prodMk_left, MDifferentiableAt.prodMap, Trivialization.mdifferentiable, VectorBundle.prod, ContMDiff.prodMap, contMDiff_snd_tangentBundle_modelSpace, contMDiffWithinAt_hom_bundle, ContinuousLinearMap.fpowerSeriesBilinear_apply_one, NumberField.mixedEmbedding.volume_fundamentalDomain_stdBasis, analyticOn_snd, contMDiffAt_snd, Trivialization.contMDiffWithinAt_section, extChartAt_prod, IsContDiffImplicitAt.implicitFunctionData_leftFun_pt, analyticOn_fst, WithLp.analyticOn_ofLp, analyticAt_snd, Manifold.LiftSourceTargetPropertyAt.prodMap, ProbabilityTheory.indepFun_iff_charFunDual_prod, contMDiffOn_section_of_mem_baseSet, AnalyticOnNhd.prod, ContMDiff.prodMk
normedAddGroup πŸ“–CompOpβ€”
normedCommGroup πŸ“–CompOpβ€”
normedGroup πŸ“–CompOpβ€”
seminormedAddCommGroup πŸ“–CompOp
48 mathmath: ContinuousAlternatingMap.opNorm_prod, ContinuousLinearMap.opNorm_prod, ContinuousLinearMap.norm_inr_le_one, IsBoundedLinearMap.fst, norm_jacobiThetaβ‚‚_term_fderiv_ge, ContinuousLinearMap.norm_inl_le_one, ContinuousLinearMap.norm_fst_le, ContinuousLinearMap.opNNNorm_prod, MDifferentiableAt.clm_prodMap, LinearIsometryEquiv.symm_prodComm, MeasureTheory.hasFDerivAt_convolution_right_with_param, LinearIsometryEquiv.coe_prodAssoc_symm, MDifferentiableOn.clm_prodMap, ContinuousMultilinearMap.prodL_apply, IsBoundedBilinearMap.isBoundedLinearMap_deriv, IsBoundedLinearMap.snd, SmoothBumpCovering.embeddingPiTangent_injective_mfderiv, ContinuousLinearMap.norm_inr, MDifferentiable.clm_prodMap, SmoothBumpCovering.embeddingPiTangent_ker_mfderiv, LinearIsometry.inr_apply, ContinuousMultilinearMap.opNNNorm_prod, SmoothBumpCovering.embeddingPiTangent_injOn, ContMDiffAt.clm_prodMap, LinearIsometryEquiv.prodComm_symm_apply, SmoothBumpCovering.comp_embeddingPiTangent_mfderiv, ContinuousLinearMap.norm_fst, ContMDiff.clm_prodMap, SmoothBumpCovering.embeddingPiTangent_injective, ContinuousMultilinearMap.prodL_symm_apply, ContinuousLinearMap.norm_inl, ContinuousAlternatingMap.prodLIE_apply, LinearIsometry.inl_apply, ContMDiffWithinAt.clm_prodMap, ContinuousLinearMap.norm_snd_le, LinearIsometryEquiv.prodComm_apply, ContMDiffOn.clm_prodMap, ContinuousLinearMap.norm_snd, ContinuousAffineMap.toConstProdContinuousLinearMap_fst, ContinuousMultilinearMap.opNorm_prod, SmoothBumpCovering.embeddingPiTangent_coe, ContinuousAlternatingMap.prodLIE_symm_apply, ContinuousAlternatingMap.opNNNorm_prod, MDifferentiableWithinAt.clm_prodMap, isBoundedLinearMap_prod_multilinear, LinearIsometryEquiv.coe_prodAssoc, norm_jacobiThetaβ‚‚_term_fderiv_le, ContinuousAffineMap.toConstProdContinuousLinearMap_snd
seminormedAddGroup πŸ“–CompOp
14 mathmath: WithLp.prod_nnnorm_ofLp, DoubleCentralizer.nnnorm_def', Unitization.nnnorm_def, ContinuousLinearMap.opNNNorm_prod, MeasureTheory.integrable_prod, DoubleCentralizer.nnnorm_def, MeasureTheory.memLp_prod_iff, nnnorm_def, MeasureTheory.MemLp.of_fst_snd, MeasureTheory.SimpleFunc.integrable_pair, WithLp.prod_nnnorm_toLp, MeasureTheory.Integrable.prodMk, nnnorm_mk, NumberField.mixedEmbedding.nnnorm_eq_sup_normAtPlace
seminormedCommGroup πŸ“–CompOpβ€”
seminormedGroup πŸ“–CompOp
2 mathmath: nnnorm_mk', nnnorm_def'
toNorm πŸ“–CompOp
42 mathmath: ContinuousLinearMap.opNorm_prod, Asymptotics.IsLittleO.prod_rightr, NumberField.mixedEmbedding.norm_eq_sup'_normAtPlace, Asymptotics.isLittleO_prod_left, Asymptotics.isBigO_prod_left, NumberField.mixedEmbedding.norm_le_convexBodySumFun, HasFPowerSeriesWithinOnBall.isBigO_image_sub_image_sub_deriv_principal, WithLp.prod_norm_toLp, DoubleCentralizer.norm_def', Asymptotics.isBigO_fst_prod, IsBoundedBilinearMap.isBigO', DoubleCentralizer.norm_def, Complex.equivRealProd_apply_le', Asymptotics.isBigO_fst_prod', Asymptotics.IsLittleO.prod_left, WithLp.prod_norm_ofLp, norm_snd_le, HasFPowerSeriesAt.isBigO_image_sub_norm_mul_norm_sub, HasFPowerSeriesOnBall.isBigO_image_sub_image_sub_deriv_principal, norm_prod_le_iff, Asymptotics.isBigO_snd_prod', norm_def, Asymptotics.isBigO_snd_prod, Unitization.norm_def, instNormSMulClass, norm_mk, Asymptotics.IsBigOWith.prod_rightl, Asymptotics.isBigOWith_prod_left, WithCStarModule.norm_equiv_le_norm_prod, Asymptotics.IsBigOWith.prod_left, Asymptotics.IsBigO.prod_rightl, HasFPowerSeriesWithinAt.isBigO_image_sub_norm_mul_norm_sub, Asymptotics.IsBigO.prod_rightr, normOneClass, Asymptotics.isBigOWith_snd_prod, Asymptotics.IsLittleO.prod_rightl, Asymptotics.IsBigO.prod_left, Asymptotics.IsBigOWith.prod_rightr, Asymptotics.isBigOWith_fst_prod, Asymptotics.IsBigOWith.prod_left_same, Complex.equivRealProd_apply_le, norm_fst_le

Theorems

NameKindAssumesProvesValidatesDepends On
nnnorm_def πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
seminormedAddGroup
NNReal
NNReal.instMax
β€”β€”
nnnorm_def' πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedGroup.toNNNorm
seminormedGroup
NNReal
NNReal.instMax
β€”β€”
nnnorm_mk πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
seminormedAddGroup
NNReal
NNReal.instMax
β€”β€”
nnnorm_mk' πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedGroup.toNNNorm
seminormedGroup
NNReal
NNReal.instMax
β€”β€”
norm_def πŸ“–mathematicalβ€”Norm.norm
toNorm
Real
Real.instMax
β€”β€”
norm_mk πŸ“–mathematicalβ€”Norm.norm
toNorm
Real
Real.instMax
β€”β€”

ULift

Definitions

NameCategoryTheorems
nnnorm πŸ“–CompOp
3 mathmath: nnnorm_up, nnnorm_def, nnnorm_down
norm πŸ“–CompOp
5 mathmath: norm_up, norm_down, normOneClass, norm_def, instNormSMulClass
normedAddCommGroup πŸ“–CompOpβ€”
normedAddGroup πŸ“–CompOpβ€”
normedCommGroup πŸ“–CompOpβ€”
normedGroup πŸ“–CompOpβ€”
seminormedAddCommGroup πŸ“–CompOpβ€”
seminormedAddGroup πŸ“–CompOpβ€”
seminormedCommGroup πŸ“–CompOpβ€”
seminormedGroup πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
nnnorm_def πŸ“–mathematicalβ€”NNNorm.nnnorm
nnnorm
β€”β€”
nnnorm_down πŸ“–mathematicalβ€”NNNorm.nnnorm
nnnorm
β€”β€”
nnnorm_up πŸ“–mathematicalβ€”NNNorm.nnnorm
nnnorm
β€”β€”
norm_def πŸ“–mathematicalβ€”Norm.norm
norm
β€”β€”
norm_down πŸ“–mathematicalβ€”Norm.norm
norm
β€”β€”
norm_up πŸ“–mathematicalβ€”Norm.norm
norm
β€”β€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
nnnorm_le_pi_nnnorm πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
Pi.seminormedAddGroup
β€”norm_le_pi_norm
nnnorm_le_pi_nnnorm' πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedGroup.toNNNorm
Pi.seminormedGroup
β€”norm_le_pi_norm'
nnnorm_ofAdd πŸ“–mathematicalβ€”NNNorm.nnnorm
Multiplicative
Multiplicative.toNNNorm
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”β€”
nnnorm_ofDual πŸ“–mathematicalβ€”NNNorm.nnnorm
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toNNNorm
β€”β€”
nnnorm_ofMul πŸ“–mathematicalβ€”NNNorm.nnnorm
Additive
Additive.toNNNorm
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
β€”β€”
nnnorm_toAdd πŸ“–mathematicalβ€”NNNorm.nnnorm
DFunLike.coe
Equiv
Multiplicative
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
Multiplicative.toNNNorm
β€”β€”
nnnorm_toDual πŸ“–mathematicalβ€”NNNorm.nnnorm
OrderDual
OrderDual.toNNNorm
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
nnnorm_toMul πŸ“–mathematicalβ€”NNNorm.nnnorm
DFunLike.coe
Equiv
Additive
EquivLike.toFunLike
Equiv.instEquivLike
Additive.toMul
Additive.toNNNorm
β€”β€”
norm_fst_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Prod.toNorm
β€”le_max_left
norm_le_pi_norm πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
SeminormedAddGroup.toNorm
Pi.seminormedAddGroup
β€”pi_norm_le_iff_of_nonneg
norm_nonneg
le_rfl
norm_le_pi_norm' πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
SeminormedGroup.toNorm
Pi.seminormedGroup
β€”pi_norm_le_iff_of_nonneg'
norm_nonneg'
le_rfl
norm_ofAdd πŸ“–mathematicalβ€”Norm.norm
Multiplicative
Multiplicative.toNorm
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”β€”
norm_ofDual πŸ“–mathematicalβ€”Norm.norm
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.toNorm
β€”β€”
norm_ofMul πŸ“–mathematicalβ€”Norm.norm
Additive
Additive.toNorm
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
β€”β€”
norm_prod_le_iff πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Prod.toNorm
β€”max_le_iff
norm_snd_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Prod.toNorm
β€”le_max_right
norm_toAdd πŸ“–mathematicalβ€”Norm.norm
DFunLike.coe
Equiv
Multiplicative
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
Multiplicative.toNorm
β€”β€”
norm_toDual πŸ“–mathematicalβ€”Norm.norm
OrderDual
OrderDual.toNorm
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
norm_toMul πŸ“–mathematicalβ€”Norm.norm
DFunLike.coe
Equiv
Additive
EquivLike.toFunLike
Equiv.instEquivLike
Additive.toMul
Additive.toNorm
β€”β€”
pi_nnnorm_const πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
Pi.seminormedAddGroup
β€”NNReal.eq
pi_norm_const
pi_nnnorm_const' πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedGroup.toNNNorm
Pi.seminormedGroup
β€”NNReal.eq
pi_norm_const'
pi_nnnorm_const_le πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
Pi.seminormedAddGroup
β€”pi_norm_const_le
pi_nnnorm_const_le' πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedGroup.toNNNorm
Pi.seminormedGroup
β€”pi_norm_const_le'
pi_nnnorm_le_iff πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
Pi.seminormedAddGroup
β€”pi_norm_le_iff_of_nonneg
NNReal.coe_nonneg
pi_nnnorm_le_iff' πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedGroup.toNNNorm
Pi.seminormedGroup
β€”pi_norm_le_iff_of_nonneg'
NNReal.coe_nonneg
pi_nnnorm_lt_iff πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
Pi.seminormedAddGroup
β€”pi_norm_lt_iff
pi_nnnorm_lt_iff' πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNNorm.nnnorm
SeminormedGroup.toNNNorm
Pi.seminormedGroup
β€”pi_norm_lt_iff'
pi_norm_const πŸ“–mathematicalβ€”Norm.norm
SeminormedAddGroup.toNorm
Pi.seminormedAddGroup
β€”dist_zero_right
dist_pi_const
pi_norm_const' πŸ“–mathematicalβ€”Norm.norm
SeminormedGroup.toNorm
Pi.seminormedGroup
β€”dist_pi_const
pi_norm_const_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
SeminormedAddGroup.toNorm
Pi.seminormedAddGroup
β€”pi_norm_le_iff_of_nonneg
norm_nonneg
le_rfl
pi_norm_const_le' πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
SeminormedGroup.toNorm
Pi.seminormedGroup
β€”pi_norm_le_iff_of_nonneg'
norm_nonneg'
le_rfl
pi_norm_le_iff_of_nonempty πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
SeminormedAddGroup.toNorm
Pi.seminormedAddGroup
β€”pi_norm_le_iff_of_nonneg
LE.le.trans
norm_nonneg
pi_norm_le_iff_of_nonempty' πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
SeminormedGroup.toNorm
Pi.seminormedGroup
β€”pi_norm_le_iff_of_nonneg'
LE.le.trans
norm_nonneg'
pi_norm_le_iff_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
SeminormedAddGroup.toNorm
Pi.seminormedAddGroup
β€”dist_zero_right
dist_pi_le_iff
pi_norm_le_iff_of_nonneg' πŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
SeminormedGroup.toNorm
Pi.seminormedGroup
β€”dist_pi_le_iff
pi_norm_lt_iff πŸ“–mathematicalReal
Real.instLT
Real.instZero
Norm.norm
SeminormedAddGroup.toNorm
Pi.seminormedAddGroup
β€”dist_zero_right
dist_pi_lt_iff
pi_norm_lt_iff' πŸ“–mathematicalReal
Real.instLT
Real.instZero
Norm.norm
SeminormedGroup.toNorm
Pi.seminormedGroup
β€”dist_pi_lt_iff

---

← Back to Index