Documentation

Mathlib.Analysis.Normed.Group.Constructions

Product of normed groups and other constructions #

This file constructs the infinity norm on finite products of normed groups and provides instances for type synonyms.

PUnit #

ULift #

instance ULift.norm {E : Type u_2} [Norm E] :
Equations
    @[simp]
    theorem ULift.norm_up {E : Type u_2} [Norm E] (x : E) :

    Additive, Multiplicative #

    instance Additive.toNorm {E : Type u_2} [Norm E] :
    Equations

      Order dual #

      Binary product of normed groups #

      instance Prod.toNorm {E : Type u_2} {F : Type u_3} [Norm E] [Norm F] :
      Norm (E ร— F)
      Equations
        @[simp]
        theorem Prod.norm_mk {E : Type u_2} {F : Type u_3} [Norm E] [Norm F] (x : E) (y : F) :

        Product of seminormed groups, using the sup norm.

        Equations

          Product of seminormed groups, using the sup norm.

          Equations

            Multiplicative version of Prod.nnnorm_def. Earlier, this name was used for the additive version.

            Product of seminormed groups, using the sup norm.

            Equations

              Product of seminormed groups, using the sup norm.

              Equations
                instance Prod.normedGroup {E : Type u_2} {F : Type u_3} [NormedGroup E] [NormedGroup F] :

                Product of normed groups, using the sup norm.

                Equations
                  instance Prod.normedAddGroup {E : Type u_2} {F : Type u_3} [NormedAddGroup E] [NormedAddGroup F] :

                  Product of normed groups, using the sup norm.

                  Equations

                    Product of normed groups, using the sup norm.

                    Equations

                      Product of normed groups, using the sup norm.

                      Equations

                        Finite product of normed groups #

                        instance Pi.seminormedGroup {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedGroup (G i)] :
                        SeminormedGroup ((i : ฮน) โ†’ G i)

                        Finite product of seminormed groups, using the sup norm.

                        Equations
                          instance Pi.seminormedAddGroup {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddGroup (G i)] :
                          SeminormedAddGroup ((i : ฮน) โ†’ G i)

                          Finite product of seminormed groups, using the sup norm.

                          Equations
                            theorem Pi.norm_def' {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedGroup (G i)] (f : (i : ฮน) โ†’ G i) :
                            โ€–fโ€– = โ†‘(Finset.univ.sup fun (b : ฮน) => โ€–f bโ€–โ‚Š)
                            theorem Pi.norm_def {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddGroup (G i)] (f : (i : ฮน) โ†’ G i) :
                            โ€–fโ€– = โ†‘(Finset.univ.sup fun (b : ฮน) => โ€–f bโ€–โ‚Š)
                            theorem Pi.nnnorm_def' {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedGroup (G i)] (f : (i : ฮน) โ†’ G i) :
                            theorem Pi.nnnorm_def {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddGroup (G i)] (f : (i : ฮน) โ†’ G i) :
                            theorem pi_norm_le_iff_of_nonneg' {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedGroup (G i)] {x : (i : ฮน) โ†’ G i} {r : โ„} (hr : 0 โ‰ค r) :
                            โ€–xโ€– โ‰ค r โ†” โˆ€ (i : ฮน), โ€–x iโ€– โ‰ค r

                            The seminorm of an element in a product space is โ‰ค r if and only if the norm of each component is.

                            theorem pi_norm_le_iff_of_nonneg {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddGroup (G i)] {x : (i : ฮน) โ†’ G i} {r : โ„} (hr : 0 โ‰ค r) :
                            โ€–xโ€– โ‰ค r โ†” โˆ€ (i : ฮน), โ€–x iโ€– โ‰ค r

                            The seminorm of an element in a product space is โ‰ค r if and only if the norm of each component is.

                            theorem pi_nnnorm_le_iff' {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedGroup (G i)] {x : (i : ฮน) โ†’ G i} {r : NNReal} :
                            theorem pi_nnnorm_le_iff {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddGroup (G i)] {x : (i : ฮน) โ†’ G i} {r : NNReal} :
                            theorem pi_norm_le_iff_of_nonempty' {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedGroup (G i)] (f : (i : ฮน) โ†’ G i) {r : โ„} [Nonempty ฮน] :
                            โ€–fโ€– โ‰ค r โ†” โˆ€ (b : ฮน), โ€–f bโ€– โ‰ค r
                            theorem pi_norm_le_iff_of_nonempty {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddGroup (G i)] (f : (i : ฮน) โ†’ G i) {r : โ„} [Nonempty ฮน] :
                            โ€–fโ€– โ‰ค r โ†” โˆ€ (b : ฮน), โ€–f bโ€– โ‰ค r
                            theorem pi_norm_lt_iff' {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedGroup (G i)] {x : (i : ฮน) โ†’ G i} {r : โ„} (hr : 0 < r) :
                            โ€–xโ€– < r โ†” โˆ€ (i : ฮน), โ€–x iโ€– < r

                            The seminorm of an element in a product space is < r if and only if the norm of each component is.

                            theorem pi_norm_lt_iff {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddGroup (G i)] {x : (i : ฮน) โ†’ G i} {r : โ„} (hr : 0 < r) :
                            โ€–xโ€– < r โ†” โˆ€ (i : ฮน), โ€–x iโ€– < r

                            The seminorm of an element in a product space is < r if and only if the norm of each component is.

                            theorem pi_nnnorm_lt_iff' {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedGroup (G i)] {x : (i : ฮน) โ†’ G i} {r : NNReal} (hr : 0 < r) :
                            โ€–xโ€–โ‚Š < r โ†” โˆ€ (i : ฮน), โ€–x iโ€–โ‚Š < r
                            theorem pi_nnnorm_lt_iff {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddGroup (G i)] {x : (i : ฮน) โ†’ G i} {r : NNReal} (hr : 0 < r) :
                            โ€–xโ€–โ‚Š < r โ†” โˆ€ (i : ฮน), โ€–x iโ€–โ‚Š < r
                            theorem norm_le_pi_norm' {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedGroup (G i)] (f : (i : ฮน) โ†’ G i) (i : ฮน) :
                            theorem norm_le_pi_norm {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddGroup (G i)] (f : (i : ฮน) โ†’ G i) (i : ฮน) :
                            theorem nnnorm_le_pi_nnnorm' {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedGroup (G i)] (f : (i : ฮน) โ†’ G i) (i : ฮน) :
                            theorem nnnorm_le_pi_nnnorm {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddGroup (G i)] (f : (i : ฮน) โ†’ G i) (i : ฮน) :
                            theorem pi_norm_const_le' {ฮน : Type u_1} {E : Type u_2} [Fintype ฮน] [SeminormedGroup E] (a : E) :
                            โ€–fun (x : ฮน) => aโ€– โ‰ค โ€–aโ€–
                            theorem pi_norm_const_le {ฮน : Type u_1} {E : Type u_2} [Fintype ฮน] [SeminormedAddGroup E] (a : E) :
                            โ€–fun (x : ฮน) => aโ€– โ‰ค โ€–aโ€–
                            theorem pi_nnnorm_const_le' {ฮน : Type u_1} {E : Type u_2} [Fintype ฮน] [SeminormedGroup E] (a : E) :
                            theorem pi_nnnorm_const_le {ฮน : Type u_1} {E : Type u_2} [Fintype ฮน] [SeminormedAddGroup E] (a : E) :
                            @[simp]
                            theorem pi_norm_const' {ฮน : Type u_1} {E : Type u_2} [Fintype ฮน] [SeminormedGroup E] [Nonempty ฮน] (a : E) :
                            โ€–fun (_i : ฮน) => aโ€– = โ€–aโ€–
                            @[simp]
                            theorem pi_norm_const {ฮน : Type u_1} {E : Type u_2} [Fintype ฮน] [SeminormedAddGroup E] [Nonempty ฮน] (a : E) :
                            โ€–fun (_i : ฮน) => aโ€– = โ€–aโ€–
                            @[simp]
                            theorem pi_nnnorm_const' {ฮน : Type u_1} {E : Type u_2} [Fintype ฮน] [SeminormedGroup E] [Nonempty ฮน] (a : E) :
                            @[simp]
                            theorem pi_nnnorm_const {ฮน : Type u_1} {E : Type u_2} [Fintype ฮน] [SeminormedAddGroup E] [Nonempty ฮน] (a : E) :
                            theorem Pi.sum_norm_apply_le_norm' {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedGroup (G i)] (f : (i : ฮน) โ†’ G i) :

                            The $L^1$ norm is less than the $L^\infty$ norm scaled by the cardinality.

                            theorem Pi.sum_norm_apply_le_norm {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddGroup (G i)] (f : (i : ฮน) โ†’ G i) :

                            The $L^1$ norm is less than the $L^\infty$ norm scaled by the cardinality.

                            theorem Pi.sum_nnnorm_apply_le_nnnorm' {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedGroup (G i)] (f : (i : ฮน) โ†’ G i) :

                            The $L^1$ norm is less than the $L^\infty$ norm scaled by the cardinality.

                            theorem Pi.sum_nnnorm_apply_le_nnnorm {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddGroup (G i)] (f : (i : ฮน) โ†’ G i) :

                            The $L^1$ norm is less than the $L^\infty$ norm scaled by the cardinality.

                            instance Pi.seminormedCommGroup {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedCommGroup (G i)] :
                            SeminormedCommGroup ((i : ฮน) โ†’ G i)

                            Finite product of seminormed groups, using the sup norm.

                            Equations
                              instance Pi.seminormedAddCommGroup {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ SeminormedAddCommGroup (G i)] :
                              SeminormedAddCommGroup ((i : ฮน) โ†’ G i)

                              Finite product of seminormed groups, using the sup norm.

                              Equations
                                instance Pi.normedGroup {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ NormedGroup (G i)] :
                                NormedGroup ((i : ฮน) โ†’ G i)

                                Finite product of normed groups, using the sup norm.

                                Equations
                                  instance Pi.normedAddGroup {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ NormedAddGroup (G i)] :
                                  NormedAddGroup ((i : ฮน) โ†’ G i)

                                  Finite product of seminormed groups, using the sup norm.

                                  Equations
                                    instance Pi.normedCommGroup {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ NormedCommGroup (G i)] :
                                    NormedCommGroup ((i : ฮน) โ†’ G i)

                                    Finite product of normed groups, using the sup norm.

                                    Equations
                                      instance Pi.normedAddCommGroup {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [(i : ฮน) โ†’ NormedAddCommGroup (G i)] :
                                      NormedAddCommGroup ((i : ฮน) โ†’ G i)

                                      Finite product of seminormed groups, using the sup norm.

                                      Equations
                                        theorem Pi.nnnorm_single {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [DecidableEq ฮน] [(i : ฮน) โ†’ NormedAddCommGroup (G i)] {i : ฮน} (y : G i) :
                                        theorem Pi.enorm_single {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [DecidableEq ฮน] [(i : ฮน) โ†’ NormedAddCommGroup (G i)] {i : ฮน} (y : G i) :
                                        theorem Pi.norm_single {ฮน : Type u_1} {G : ฮน โ†’ Type u_4} [Fintype ฮน] [DecidableEq ฮน] [(i : ฮน) โ†’ NormedAddCommGroup (G i)] {i : ฮน} (y : G i) :

                                        Multiplicative opposite #

                                        The (additive) norm on the multiplicative opposite is the same as the norm on the original type.

                                        Note that we do not provide this more generally as Norm Eแตแต’แต–, as this is not always a good choice of norm in the multiplicative SeminormedGroup E case.

                                        We could repeat this instance to provide a [SeminormedGroup E] : SeminormedGroup Eแตƒแต’แต– instance, but that case would likely never be used.

                                        Equations