| Name | Category | Theorems |
Memāp š | MathDef | 18 mathmath: zero_memāp, zero_mem_āp', memāp_infty, memāp_zero_iff, memāp_gen_iff, lp.memāp, memāp_infty_iff, lp.memāp_of_tendsto, memāp_gen, one_memāp_infty, memāp_gen', algebraMap_memāp_infty, Memāp.all, Memāp.star_iff, intCast_memāp_infty, memāp_zero, Memāp.neg_iff, natCast_memāp_infty
|
PreLp š | CompOp | 124 mathmath: lp.norm_apply_le_norm, lp.isLUB_norm, IsHilbertSum.surjective_isometry, OrthogonalFamily.linearIsometry_apply_single, lp.instNormedStarGroupSubtypePreLpMemAddSubgroup, lp.inner_eq_tsum, lp.coeFn_star, lp.norm_eq_zero_iff, IsHilbertSum.linearIsometryEquiv_symm_apply, lp.eq_zero_iff_coeFn_eq_zero, lp.coeFnAddMonoidHom_apply, lp.sum_rpow_le_norm_rpow, lp.norm_sum_single, IsHilbertSum.hasSum_linearIsometryEquiv_symm, coe_equiv_lpPiLp_symm, lp.inftyCStarRing, lp.norm_rpow_eq_tsum, lp.instIsCentralScalarPreLp, OrthogonalFamily.linearIsometry_apply_dfinsupp_sum_single, lp.coeFn_single, lp.summable_mul, lp.hasSum_single, lp.memāp, lp.coeFn_zero, lp.norm_const_smul, coe_addEquiv_lpPiLp_symm, lp.single_apply_ne, lp.singleAddMonoidHom_apply, HilbertBasis.hasSum_repr, lp.singleContinuousAddMonoidHom_apply, lp.inner_single_right, lp.norm_nonneg', lp.single_neg, coe_ringEquiv_lpBCF, lp.single_zero, coe_lpBCFāįµ¢, lp.infty_coeFn_mul, lp.coeFn_add, OrthogonalFamily.hasSum_linearIsometry, lp.instSMulCommClassSubtypePreLpMemAddSubgroup, lp.monotone, lp.singleContinuousLinearMap_apply, LipschitzWith.coordinate, Orthonormal.linearIsometryEquiv_symm_apply_single_one, OrthogonalFamily.summable_of_lp, lp.coeFn_sub, lp.ext_continuousAddMonoidHom_iff, lp.infty_coeFn_pow, lp.infty_smulCommClass, lp.norm_eq_card_dsupport, GromovHausdorff.ghDist_eq_hausdorffDist, lp.instStarModuleSubtypePreLpMemAddSubgroup, coe_equiv_lpPiLp, lp.coeFn_sum, lp.norm_compl_sum_single, KuratowskiEmbedding.embeddingOfSubset_isometry, lp.coe_lpSubmodule, GromovHausdorff.eq_toGHSpace, lp.single_sub, coe_lpPiLpāįµ¢, lp.lsingle_apply, lp.norm_neg, HilbertBasis.repr_symm_single, HilbertBasis.repr_apply_apply, lp.coeFn_smul, lp.summable_inner, lp.infty_coeFn_one, coe_addEquiv_lpBCF_symm, lp.single_smul, lp.ext_iff, lp.norm_zero, LipschitzOnWith.coordinate, lp.instIsCentralScalarSubtypePreLpMemAddSubgroup, lp.instIsScalarTowerPreLp, lp.inner_single_left, lp.hasSum_norm, lp.infty_coeFn_intCast, lp.tsum_mul_le_mul_norm', coe_lpBCFāįµ¢_symm, coe_lpPiLpāįµ¢_symm, lp.norm_single, coe_addEquiv_lpBCF, lp.mem_lp_const_smul, OrthogonalFamily.range_linearIsometry, lp.single_add, lp.norm_sub_norm_compl_sub_single, lp.infty_coeFn_natCast, lp.hasSum_inner, IsHilbertSum.linearIsometryEquiv_symm_apply_dfinsupp_sum_single, HilbertBasis.repr_self, coe_addEquiv_lpPiLp, lp.infty_isScalarTower, lp.eq_zero', lp.instNormOneClassSubtypePreLpMemAddSubgroupTopENNRealOfNonempty, IsHilbertSum.linearIsometryEquiv_symm_apply_single, UnitAddTorus.mFourierBasis_repr, fourierBasis_repr, lp.single_apply, lp.isometry_single, KuratowskiEmbedding.embeddingOfSubset_dist_le, coe_ringEquiv_lpBCF_symm, lp.norm_eq_tsum_rpow, lp.coeFn_neg, lp.norm_const_smul_le, lp.norm_eq_ciSup, lp.completeSpace, KuratowskiEmbedding.exists_isometric_embedding, lp.instIsBoundedSMulSubtypePreLpMemAddSubgroup, KuratowskiEmbedding.embeddingOfSubset_coe, lp.star_apply, equiv_lpPiLp_norm, lp.uniformContinuous_coe, coe_algEquiv_lpBCF_symm, lp.instSMulCommClassPreLp, OrthogonalFamily.linearIsometry_apply, lp.single_apply_self, IsHilbertSum.linearIsometryEquiv_apply_dfinsupp_sum_single, coe_algEquiv_lpBCF, GromovHausdorff.eq_toGHSpace_iff, lp.instIsScalarTowerSubtypePreLpMemAddSubgroup, HilbertBasis.hasSum_repr_symm, kuratowskiEmbedding.isometry, lp.tsum_mul_le_mul_norm, lp.ext_continuousLinearMap_iff
|
instAddCommGroupPreLp š | CompOp | 124 mathmath: lp.norm_apply_le_norm, lp.isLUB_norm, IsHilbertSum.surjective_isometry, OrthogonalFamily.linearIsometry_apply_single, lp.instNormedStarGroupSubtypePreLpMemAddSubgroup, lp.inner_eq_tsum, lp.coeFn_star, lp.norm_eq_zero_iff, IsHilbertSum.linearIsometryEquiv_symm_apply, lp.eq_zero_iff_coeFn_eq_zero, lp.coeFnAddMonoidHom_apply, lp.sum_rpow_le_norm_rpow, lp.norm_sum_single, IsHilbertSum.hasSum_linearIsometryEquiv_symm, coe_equiv_lpPiLp_symm, lp.inftyCStarRing, lp.norm_rpow_eq_tsum, lp.instIsCentralScalarPreLp, OrthogonalFamily.linearIsometry_apply_dfinsupp_sum_single, lp.coeFn_single, lp.summable_mul, lp.hasSum_single, lp.memāp, lp.coeFn_zero, lp.norm_const_smul, coe_addEquiv_lpPiLp_symm, lp.single_apply_ne, lp.singleAddMonoidHom_apply, HilbertBasis.hasSum_repr, lp.singleContinuousAddMonoidHom_apply, lp.inner_single_right, lp.norm_nonneg', lp.single_neg, coe_ringEquiv_lpBCF, lp.single_zero, coe_lpBCFāįµ¢, lp.infty_coeFn_mul, lp.coeFn_add, OrthogonalFamily.hasSum_linearIsometry, lp.instSMulCommClassSubtypePreLpMemAddSubgroup, lp.monotone, lp.singleContinuousLinearMap_apply, LipschitzWith.coordinate, Orthonormal.linearIsometryEquiv_symm_apply_single_one, OrthogonalFamily.summable_of_lp, lp.coeFn_sub, lp.ext_continuousAddMonoidHom_iff, lp.infty_coeFn_pow, lp.infty_smulCommClass, lp.norm_eq_card_dsupport, GromovHausdorff.ghDist_eq_hausdorffDist, lp.instStarModuleSubtypePreLpMemAddSubgroup, coe_equiv_lpPiLp, lp.coeFn_sum, lp.norm_compl_sum_single, KuratowskiEmbedding.embeddingOfSubset_isometry, lp.coe_lpSubmodule, GromovHausdorff.eq_toGHSpace, lp.single_sub, coe_lpPiLpāįµ¢, lp.lsingle_apply, lp.norm_neg, HilbertBasis.repr_symm_single, HilbertBasis.repr_apply_apply, lp.coeFn_smul, lp.summable_inner, lp.infty_coeFn_one, coe_addEquiv_lpBCF_symm, lp.single_smul, lp.ext_iff, lp.norm_zero, LipschitzOnWith.coordinate, lp.instIsCentralScalarSubtypePreLpMemAddSubgroup, lp.instIsScalarTowerPreLp, lp.inner_single_left, lp.hasSum_norm, lp.infty_coeFn_intCast, lp.tsum_mul_le_mul_norm', coe_lpBCFāįµ¢_symm, coe_lpPiLpāįµ¢_symm, lp.norm_single, coe_addEquiv_lpBCF, lp.mem_lp_const_smul, OrthogonalFamily.range_linearIsometry, lp.single_add, lp.norm_sub_norm_compl_sub_single, lp.infty_coeFn_natCast, lp.hasSum_inner, IsHilbertSum.linearIsometryEquiv_symm_apply_dfinsupp_sum_single, HilbertBasis.repr_self, coe_addEquiv_lpPiLp, lp.infty_isScalarTower, lp.eq_zero', lp.instNormOneClassSubtypePreLpMemAddSubgroupTopENNRealOfNonempty, IsHilbertSum.linearIsometryEquiv_symm_apply_single, UnitAddTorus.mFourierBasis_repr, fourierBasis_repr, lp.single_apply, lp.isometry_single, KuratowskiEmbedding.embeddingOfSubset_dist_le, coe_ringEquiv_lpBCF_symm, lp.norm_eq_tsum_rpow, lp.coeFn_neg, lp.norm_const_smul_le, lp.norm_eq_ciSup, lp.completeSpace, KuratowskiEmbedding.exists_isometric_embedding, lp.instIsBoundedSMulSubtypePreLpMemAddSubgroup, KuratowskiEmbedding.embeddingOfSubset_coe, lp.star_apply, equiv_lpPiLp_norm, lp.uniformContinuous_coe, coe_algEquiv_lpBCF_symm, lp.instSMulCommClassPreLp, OrthogonalFamily.linearIsometry_apply, lp.single_apply_self, IsHilbertSum.linearIsometryEquiv_apply_dfinsupp_sum_single, coe_algEquiv_lpBCF, GromovHausdorff.eq_toGHSpace_iff, lp.instIsScalarTowerSubtypePreLpMemAddSubgroup, HilbertBasis.hasSum_repr_symm, kuratowskiEmbedding.isometry, lp.tsum_mul_le_mul_norm, lp.ext_continuousLinearMap_iff
|
lp š | CompOp | 121 mathmath: lp.norm_apply_le_norm, lp.isLUB_norm, IsHilbertSum.surjective_isometry, OrthogonalFamily.linearIsometry_apply_single, lp.instNormedStarGroupSubtypePreLpMemAddSubgroup, lp.inner_eq_tsum, lp.coeFn_star, lp.norm_eq_zero_iff, IsHilbertSum.linearIsometryEquiv_symm_apply, lp.eq_zero_iff_coeFn_eq_zero, lp.coeFnAddMonoidHom_apply, lp.sum_rpow_le_norm_rpow, lp.norm_sum_single, IsHilbertSum.hasSum_linearIsometryEquiv_symm, coe_equiv_lpPiLp_symm, lp.inftyCStarRing, lp.norm_rpow_eq_tsum, OrthogonalFamily.linearIsometry_apply_dfinsupp_sum_single, lp.coeFn_single, lp.summable_mul, lp.hasSum_single, lp.memāp, lp.coeFn_zero, lp.norm_const_smul, coe_addEquiv_lpPiLp_symm, lp.single_apply_ne, lp.singleAddMonoidHom_apply, HilbertBasis.hasSum_repr, lp.singleContinuousAddMonoidHom_apply, lp.inner_single_right, lp.norm_nonneg', lp.single_neg, coe_ringEquiv_lpBCF, lp.single_zero, coe_lpBCFāįµ¢, lp.infty_coeFn_mul, lp.coeFn_add, OrthogonalFamily.hasSum_linearIsometry, lp.instSMulCommClassSubtypePreLpMemAddSubgroup, lp.monotone, lp.singleContinuousLinearMap_apply, LipschitzWith.coordinate, Orthonormal.linearIsometryEquiv_symm_apply_single_one, OrthogonalFamily.summable_of_lp, lp.coeFn_sub, lp.ext_continuousAddMonoidHom_iff, lp.infty_coeFn_pow, lp.infty_smulCommClass, lp.norm_eq_card_dsupport, GromovHausdorff.ghDist_eq_hausdorffDist, lp.instStarModuleSubtypePreLpMemAddSubgroup, coe_equiv_lpPiLp, lp.coeFn_sum, lp.norm_compl_sum_single, KuratowskiEmbedding.embeddingOfSubset_isometry, lp.coe_lpSubmodule, GromovHausdorff.eq_toGHSpace, lp.single_sub, coe_lpPiLpāįµ¢, lp.lsingle_apply, lp.norm_neg, HilbertBasis.repr_symm_single, HilbertBasis.repr_apply_apply, lp.coeFn_smul, lp.summable_inner, lp.infty_coeFn_one, coe_addEquiv_lpBCF_symm, lp.single_smul, lp.ext_iff, lp.norm_zero, LipschitzOnWith.coordinate, lp.instIsCentralScalarSubtypePreLpMemAddSubgroup, lp.inner_single_left, lp.hasSum_norm, lp.infty_coeFn_intCast, lp.tsum_mul_le_mul_norm', coe_lpBCFāįµ¢_symm, coe_lpPiLpāįµ¢_symm, lp.norm_single, coe_addEquiv_lpBCF, lp.mem_lp_const_smul, OrthogonalFamily.range_linearIsometry, lp.single_add, lp.norm_sub_norm_compl_sub_single, lp.infty_coeFn_natCast, lp.hasSum_inner, IsHilbertSum.linearIsometryEquiv_symm_apply_dfinsupp_sum_single, HilbertBasis.repr_self, coe_addEquiv_lpPiLp, lp.infty_isScalarTower, lp.eq_zero', lp.instNormOneClassSubtypePreLpMemAddSubgroupTopENNRealOfNonempty, IsHilbertSum.linearIsometryEquiv_symm_apply_single, UnitAddTorus.mFourierBasis_repr, fourierBasis_repr, lp.single_apply, lp.isometry_single, KuratowskiEmbedding.embeddingOfSubset_dist_le, coe_ringEquiv_lpBCF_symm, lp.norm_eq_tsum_rpow, lp.coeFn_neg, lp.norm_const_smul_le, lp.norm_eq_ciSup, lp.completeSpace, KuratowskiEmbedding.exists_isometric_embedding, lp.instIsBoundedSMulSubtypePreLpMemAddSubgroup, KuratowskiEmbedding.embeddingOfSubset_coe, lp.star_apply, equiv_lpPiLp_norm, lp.uniformContinuous_coe, coe_algEquiv_lpBCF_symm, OrthogonalFamily.linearIsometry_apply, lp.single_apply_self, IsHilbertSum.linearIsometryEquiv_apply_dfinsupp_sum_single, coe_algEquiv_lpBCF, GromovHausdorff.eq_toGHSpace_iff, lp.instIsScalarTowerSubtypePreLpMemAddSubgroup, HilbertBasis.hasSum_repr_symm, kuratowskiEmbedding.isometry, lp.tsum_mul_le_mul_norm, lp.ext_continuousLinearMap_iff
|
lpInftySubalgebra š | CompOp | ā |
lpInftySubring š | CompOp | ā |
lpSubmodule š | CompOp | 1 mathmath: lp.coe_lpSubmodule
|
| Name | Category | Theorems |
coeFnAddMonoidHom š | CompOp | 1 mathmath: coeFnAddMonoidHom_apply
|
coeFun š | CompOp | ā |
inftyNormedAlgebra š | CompOp | 2 mathmath: coe_algEquiv_lpBCF_symm, coe_algEquiv_lpBCF
|
inftyNormedCommRing š | CompOp | 4 mathmath: GromovHausdorff.ghDist_eq_hausdorffDist, GromovHausdorff.eq_toGHSpace, KuratowskiEmbedding.embeddingOfSubset_dist_le, GromovHausdorff.eq_toGHSpace_iff
|
inftyNormedRing š | CompOp | 10 mathmath: LipschitzWith.coordinate, GromovHausdorff.ghDist_eq_hausdorffDist, KuratowskiEmbedding.embeddingOfSubset_isometry, GromovHausdorff.eq_toGHSpace, LipschitzOnWith.coordinate, KuratowskiEmbedding.exists_isometric_embedding, coe_algEquiv_lpBCF_symm, coe_algEquiv_lpBCF, GromovHausdorff.eq_toGHSpace_iff, kuratowskiEmbedding.isometry
|
inftyRing š | CompOp | 7 mathmath: infty_coeFn_pow, infty_coeFn_one, infty_coeFn_intCast, infty_coeFn_natCast, instNormOneClassSubtypePreLpMemAddSubgroupTopENNRealOfNonempty, coe_algEquiv_lpBCF_symm, coe_algEquiv_lpBCF
|
inftyStarRing š | CompOp | 1 mathmath: inftyCStarRing
|
instCoeOutSubtypePreLpMemAddSubgroupForall š | CompOp | ā |
instInvolutiveStar š | CompOp | ā |
instModulePreLp š | CompOp | 5 mathmath: instIsCentralScalarPreLp, coe_lpSubmodule, instIsScalarTowerPreLp, mem_lp_const_smul, instSMulCommClassPreLp
|
instModuleSubtypePreLpMemAddSubgroup š | CompOp | 37 mathmath: IsHilbertSum.surjective_isometry, OrthogonalFamily.linearIsometry_apply_single, IsHilbertSum.linearIsometryEquiv_symm_apply, IsHilbertSum.hasSum_linearIsometryEquiv_symm, OrthogonalFamily.linearIsometry_apply_dfinsupp_sum_single, norm_const_smul, HilbertBasis.hasSum_repr, coe_lpBCFāįµ¢, OrthogonalFamily.hasSum_linearIsometry, instSMulCommClassSubtypePreLpMemAddSubgroup, singleContinuousLinearMap_apply, Orthonormal.linearIsometryEquiv_symm_apply_single_one, infty_smulCommClass, instStarModuleSubtypePreLpMemAddSubgroup, coe_lpPiLpāįµ¢, lsingle_apply, HilbertBasis.repr_symm_single, HilbertBasis.repr_apply_apply, coeFn_smul, single_smul, instIsCentralScalarSubtypePreLpMemAddSubgroup, coe_lpBCFāįµ¢_symm, coe_lpPiLpāįµ¢_symm, OrthogonalFamily.range_linearIsometry, IsHilbertSum.linearIsometryEquiv_symm_apply_dfinsupp_sum_single, HilbertBasis.repr_self, infty_isScalarTower, IsHilbertSum.linearIsometryEquiv_symm_apply_single, UnitAddTorus.mFourierBasis_repr, fourierBasis_repr, norm_const_smul_le, instIsBoundedSMulSubtypePreLpMemAddSubgroup, OrthogonalFamily.linearIsometry_apply, IsHilbertSum.linearIsometryEquiv_apply_dfinsupp_sum_single, instIsScalarTowerSubtypePreLpMemAddSubgroup, HilbertBasis.hasSum_repr_symm, ext_continuousLinearMap_iff
|
instMulSubtypePreLpMemAddSubgroupTopENNReal š | CompOp | 3 mathmath: coe_ringEquiv_lpBCF, infty_coeFn_mul, coe_ringEquiv_lpBCF_symm
|
instNormSubtypePreLpMemAddSubgroup š | CompOp | 26 mathmath: norm_apply_le_norm, norm_le_of_tsum_le, isLUB_norm, norm_eq_zero_iff, sum_rpow_le_norm_rpow, norm_le_of_forall_le', norm_sum_single, norm_rpow_eq_tsum, norm_const_smul, norm_nonneg', norm_eq_card_dsupport, norm_compl_sum_single, norm_neg, norm_zero, hasSum_norm, norm_le_of_forall_sum_le, norm_le_of_forall_le, tsum_mul_le_mul_norm', norm_single, norm_sub_norm_compl_sub_single, instNormOneClassSubtypePreLpMemAddSubgroupTopENNRealOfNonempty, norm_eq_tsum_rpow, norm_const_smul_le, norm_eq_ciSup, equiv_lpPiLp_norm, tsum_mul_le_mul_norm
|
instNormedSpace š | CompOp | ā |
instStarAddMonoid š | CompOp | 1 mathmath: instNormedStarGroupSubtypePreLpMemAddSubgroup
|
instStarSubtypePreLpMemAddSubgroup š | CompOp | 3 mathmath: coeFn_star, instStarModuleSubtypePreLpMemAddSubgroup, star_apply
|
lsingle š | CompOp | 1 mathmath: lsingle_apply
|
nonUnitalNormedCommRing š | CompOp | ā |
nonUnitalNormedRing š | CompOp | 3 mathmath: inftyCStarRing, infty_smulCommClass, infty_isScalarTower
|
nonUnitalRing š | CompOp | 2 mathmath: infty_smulCommClass, infty_isScalarTower
|
normedAddCommGroup š | CompOp | 39 mathmath: IsHilbertSum.surjective_isometry, OrthogonalFamily.linearIsometry_apply_single, instNormedStarGroupSubtypePreLpMemAddSubgroup, inner_eq_tsum, IsHilbertSum.linearIsometryEquiv_symm_apply, IsHilbertSum.hasSum_linearIsometryEquiv_symm, OrthogonalFamily.linearIsometry_apply_dfinsupp_sum_single, hasSum_single, HilbertBasis.hasSum_repr, singleContinuousAddMonoidHom_apply, inner_single_right, coe_lpBCFāįµ¢, OrthogonalFamily.hasSum_linearIsometry, singleContinuousLinearMap_apply, Orthonormal.linearIsometryEquiv_symm_apply_single_one, ext_continuousAddMonoidHom_iff, infty_smulCommClass, coe_lpPiLpāįµ¢, HilbertBasis.repr_symm_single, HilbertBasis.repr_apply_apply, inner_single_left, coe_lpBCFāįµ¢_symm, coe_lpPiLpāįµ¢_symm, OrthogonalFamily.range_linearIsometry, hasSum_inner, IsHilbertSum.linearIsometryEquiv_symm_apply_dfinsupp_sum_single, HilbertBasis.repr_self, infty_isScalarTower, IsHilbertSum.linearIsometryEquiv_symm_apply_single, UnitAddTorus.mFourierBasis_repr, fourierBasis_repr, isometry_single, completeSpace, instIsBoundedSMulSubtypePreLpMemAddSubgroup, uniformContinuous_coe, OrthogonalFamily.linearIsometry_apply, IsHilbertSum.linearIsometryEquiv_apply_dfinsupp_sum_single, HilbertBasis.hasSum_repr_symm, ext_continuousLinearMap_iff
|
single š | CompOp | 28 mathmath: OrthogonalFamily.linearIsometry_apply_single, norm_sum_single, OrthogonalFamily.linearIsometry_apply_dfinsupp_sum_single, coeFn_single, hasSum_single, single_apply_ne, singleAddMonoidHom_apply, singleContinuousAddMonoidHom_apply, inner_single_right, single_neg, single_zero, singleContinuousLinearMap_apply, Orthonormal.linearIsometryEquiv_symm_apply_single_one, norm_compl_sum_single, single_sub, lsingle_apply, HilbertBasis.repr_symm_single, single_smul, inner_single_left, norm_single, single_add, norm_sub_norm_compl_sub_single, IsHilbertSum.linearIsometryEquiv_symm_apply_dfinsupp_sum_single, HilbertBasis.repr_self, IsHilbertSum.linearIsometryEquiv_symm_apply_single, single_apply, isometry_single, single_apply_self
|
singleAddMonoidHom š | CompOp | 1 mathmath: singleAddMonoidHom_apply
|
singleContinuousAddMonoidHom š | CompOp | 2 mathmath: singleContinuousAddMonoidHom_apply, ext_continuousAddMonoidHom_iff
|
singleContinuousLinearMap š | CompOp | 2 mathmath: singleContinuousLinearMap_apply, ext_continuousLinearMap_iff
|
Ā«termā^ā(_)Ā» šĀ» "API Documentation") | CompOp | ā |
Ā«termā^ā(_,_)Ā» šĀ» "API Documentation") | CompOp | ā |