Documentation Verification Report

Artanh

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Artanh.lean

Statistics

MetricCount
Definitionsartanh, tanhPartialEquiv
2
Theoremsartanh_bijOn, artanh_eq_half_log, artanh_eq_zero_iff, artanh_injOn, artanh_le_artanh, artanh_le_artanh_iff, artanh_lt_artanh, artanh_lt_artanh_iff, artanh_neg, artanh_nonneg, artanh_nonpos, artanh_pos, artanh_surjOn, artanh_tanh, artanh_zero, cosh_artanh, exp_artanh, sinh_artanh, strictMonoOn_artanh, strictMonoOn_one_add_div_one_sub, tanh_artanh, tanh_bijOn, tanh_injective, tanh_surjOn
24
Total26

Real

Definitions

NameCategoryTheorems
artanh πŸ“–CompOp
20 mathmath: artanh_pos, artanh_nonneg, artanh_bijOn, artanh_zero, strictMonoOn_artanh, artanh_eq_half_log, artanh_surjOn, artanh_le_artanh_iff, artanh_eq_zero_iff, artanh_lt_artanh_iff, artanh_nonpos, tanh_artanh, artanh_le_artanh, artanh_neg, exp_artanh, artanh_lt_artanh, artanh_injOn, sinh_artanh, cosh_artanh, artanh_tanh
tanhPartialEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
artanh_bijOn πŸ“–mathematicalβ€”Set.BijOn
Real
artanh
Set.Ioo
instPreorder
instNeg
instOne
Set.univ
β€”PartialEquiv.bijOn
artanh_eq_half_log πŸ“–mathematicalReal
Set
Set.instMembership
Set.Icc
instPreorder
instNeg
instOne
artanh
instMul
DivInvMonoid.toDiv
instDivInvMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
log
instAdd
instSub
β€”Nat.instAtLeastTwoHAddOfNat
artanh.eq_1
log_sqrt
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
one_div_mul_eq_div
artanh_eq_zero_iff πŸ“–mathematicalβ€”artanh
Real
instZero
instLE
instNeg
instOne
β€”β€”
artanh_injOn πŸ“–mathematicalβ€”Set.InjOn
Real
artanh
Set.Ioo
instPreorder
instNeg
instOne
β€”PartialEquiv.injOn
artanh_le_artanh πŸ“–mathematicalReal
instLT
instNeg
instOne
instLE
artanhβ€”artanh_le_artanh_iff
artanh_le_artanh_iff πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instNeg
instOne
instLE
artanh
β€”StrictMonoOn.le_iff_le
strictMonoOn_artanh
artanh_lt_artanh πŸ“–mathematicalReal
instLT
instNeg
instOne
artanhβ€”artanh_lt_artanh_iff
artanh_lt_artanh_iff πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instNeg
instOne
instLT
artanh
β€”StrictMonoOn.lt_iff_lt
strictMonoOn_artanh
artanh_neg πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instNeg
instOne
instZero
instLT
artanh
β€”artanh_zero
artanh_lt_artanh_iff
artanh_nonneg πŸ“–mathematicalReal
instLE
instZero
artanhβ€”artanh_zero
artanh_le_artanh_iff
artanh_nonpos πŸ“–mathematicalReal
instLE
instZero
artanhβ€”artanh_zero
artanh_le_artanh_iff
artanh_pos πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLT
artanh
β€”artanh_zero
artanh_lt_artanh_iff
artanh_surjOn πŸ“–mathematicalβ€”Set.SurjOn
Real
artanh
Set.Ioo
instPreorder
instNeg
instOne
Set.univ
β€”PartialEquiv.surjOn
artanh_tanh πŸ“–mathematicalβ€”artanh
tanh
β€”div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
artanh.eq_1
exp_eq_exp
exp_log
sqrt_pos_of_pos
sq_eq_sqβ‚€
IsOrderedRing.toMulPosMono
instIsOrderedRing
le_of_lt
exp_nonneg
sq_sqrt
tanh_eq
exp_neg
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
add_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
exp_pos
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
add_sub_sub_cancel
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
RCLike.charZero_rclike
NeZero.charZero_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_overlap_pf_zero
artanh_zero πŸ“–mathematicalβ€”artanh
Real
instZero
β€”add_zero
sub_zero
div_self
NeZero.charZero_one
RCLike.charZero_rclike
sqrt_one
log_one
cosh_artanh πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instNeg
instOne
cosh
artanh
DivInvMonoid.toDiv
instDivInvMonoid
sqrt
instSub
Monoid.toNatPow
instMonoid
β€”sqrt_pos_of_pos
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
one_pow
sq_sub_sq
sqrt_mul
exp_artanh πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instNeg
instOne
exp
artanh
sqrt
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
instSub
β€”exp_log
sqrt_pos_of_pos
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
sinh_artanh πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instNeg
instOne
sinh
artanh
DivInvMonoid.toDiv
instDivInvMonoid
sqrt
instSub
Monoid.toNatPow
instMonoid
β€”sqrt_pos_of_pos
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
one_pow
sq_sub_sq
sqrt_mul
strictMonoOn_artanh πŸ“–mathematicalβ€”StrictMonoOn
Real
instPreorder
artanh
Set.Ioo
instNeg
instOne
β€”StrictMonoOn.comp
strictMonoOn_log
strictMonoOn_sqrt
strictMonoOn_one_add_div_one_sub
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
sqrt_pos_of_pos
div_pos
strictMonoOn_one_add_div_one_sub πŸ“–mathematicalβ€”StrictMonoOn
Real
instPreorder
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
instOne
instSub
Set.Ioo
instNeg
β€”Mathlib.Tactic.FieldSimp.lt_eq_cancel_lt
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
LT.lt.ne'
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.cons_pos
instZeroLEOneClass
zero_lt_one
NeZero.one
GroupWithZero.toNontrivial
tanh_artanh πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instNeg
instOne
tanh
artanh
β€”sq_sub_sq
tanh_bijOn πŸ“–mathematicalβ€”Set.BijOn
Real
tanh
Set.univ
Set.Ioo
instPreorder
instNeg
instOne
β€”PartialEquiv.bijOn
tanh_injective πŸ“–mathematicalβ€”Real
tanh
β€”PartialEquiv.injOn
tanh_surjOn πŸ“–mathematicalβ€”Set.SurjOn
Real
tanh
Set.univ
Set.Ioo
instPreorder
instNeg
instOne
β€”PartialEquiv.surjOn

---

← Back to Index