Documentation

Mathlib.Analysis.SpecialFunctions.Artanh

Inverse of the tanh function #

In this file we define an inverse of tanh as a function from ℝ to (-1, 1).

Main definitions #

Main Results #

Tags #

artanh, arctanh, argtanh, atanh

def Real.artanh (x : ) :

artanh is defined using a logarithm, artanh x = log √((1 + x) / (1 - x)).

Equations
    Instances For
      theorem Real.artanh_eq_half_log {x : } (hx : x Set.Icc (-1) 1) :
      artanh x = 1 / 2 * log ((1 + x) / (1 - x))
      theorem Real.exp_artanh {x : } (hx : x Set.Ioo (-1) 1) :
      exp (artanh x) = ((1 + x) / (1 - x))
      theorem Real.sinh_artanh {x : } (hx : x Set.Ioo (-1) 1) :
      sinh (artanh x) = x / (1 - x ^ 2)
      theorem Real.cosh_artanh {x : } (hx : x Set.Ioo (-1) 1) :
      cosh (artanh x) = 1 / (1 - x ^ 2)
      theorem Real.tanh_artanh {x : } (hx : x Set.Ioo (-1) 1) :
      tanh (artanh x) = x

      artanh is the right inverse of tanh over (-1, 1).

      theorem Real.artanh_tanh (x : ) :
      artanh (tanh x) = x

      artanh is the left inverse of tanh.

      theorem Real.artanh_le_artanh_iff {x y : } (hx : x Set.Ioo (-1) 1) (hy : y Set.Ioo (-1) 1) :
      theorem Real.artanh_lt_artanh_iff {x y : } (hx : x Set.Ioo (-1) 1) (hy : y Set.Ioo (-1) 1) :
      artanh x < artanh y x < y
      theorem Real.artanh_le_artanh {x y : } (hx : -1 < x) (hy : y < 1) (hxy : x y) :
      theorem Real.artanh_lt_artanh {x y : } (hx : -1 < x) (hy : y < 1) (hxy : x < y) :
      theorem Real.artanh_pos {x : } (hx : x Set.Ioo 0 1) :
      0 < artanh x
      theorem Real.artanh_neg {x : } (hx : x Set.Ioo (-1) 0) :
      artanh x < 0
      theorem Real.artanh_nonneg {x : } (hx : 0 x) :
      theorem Real.artanh_nonpos {x : } (hx : x 0) :