Documentation Verification Report

Circle

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Complex/Circle.lean

Statistics

MetricCount
DefinitionshomeomorphCircle, homeomorphCircle', toCircle, Circle, argEquiv, argPartialEquiv, toCircle
7
Theoremscontinuous_toCircle, homeomorphCircle'_apply, homeomorphCircle'_apply_mk, homeomorphCircle'_symm_apply, homeomorphCircle_apply, injective_toCircle, scaled_exp_map_periodic, toCircle_add, toCircle_apply_mk, toCircle_neg, toCircle_nsmul, toCircle_zero, toCircle_zsmul, argEquiv_apply_coe, argEquiv_symm_apply, argPartialEquiv_apply, argPartialEquiv_source, argPartialEquiv_symm_apply, argPartialEquiv_target, arg_eq_arg, arg_exp, exp_add_two_pi, exp_arg, exp_eq_exp, exp_eq_one, exp_inj, exp_int_mul_two_pi, exp_sub_two_pi, exp_two_pi, exp_two_pi_mul_int, injective_arg, invOn_arg_exp, isAddQuotientCoveringMap_exp, isCoveringMap_exp, isQuotientCoveringMap_npow, isQuotientCoveringMap_zpow, leftInverse_exp_arg, periodic_exp, surjOn_exp_neg_pi_pi, arg_toCircle, coe_toCircle, toCircle_add, toCircle_coe, toCircle_neg, toCircle_zero, isLocalHomeomorph_circleExp
46
Total53

AddCircle

Definitions

NameCategoryTheorems
homeomorphCircle πŸ“–CompOp
1 mathmath: homeomorphCircle_apply
homeomorphCircle' πŸ“–CompOp
3 mathmath: homeomorphCircle'_apply_mk, homeomorphCircle'_symm_apply, homeomorphCircle'_apply
toCircle πŸ“–CompOp
15 mathmath: toCircle_add, fourier_one, fourier_neg', injective_toCircle, toCircle_zero, continuous_toCircle, toCircle_zsmul, fourier_apply, toCircle_apply_mk, fourier_zero', fourier_coe_apply', fourier_add', toCircle_nsmul, homeomorphCircle_apply, toCircle_neg

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_toCircle πŸ“–mathematicalβ€”Continuous
AddCircle
Real
Real.instAddCommGroup
Circle
QuotientAddGroup.instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
AddCommGroup.toAddGroup
AddSubgroup.zmultiples
instTopologicalSpaceCircle
toCircle
β€”continuous_coinduced_dom
Continuous.comp
ContinuousMap.continuous
Continuous.comp'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.fst
continuous_id'
Continuous.snd
Continuous.prodMk
continuous_const
homeomorphCircle'_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
AddCircle
Real
Real.instAddCommGroup
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Circle
QuotientAddGroup.instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
AddCommGroup.toAddGroup
AddSubgroup.zmultiples
instTopologicalSpaceCircle
EquivLike.toFunLike
Homeomorph.instEquivLike
homeomorphCircle'
Real.Angle.toCircle
β€”Nat.instAtLeastTwoHAddOfNat
homeomorphCircle'_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
AddCircle
Real
Real.instAddCommGroup
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Circle
QuotientAddGroup.instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
AddCommGroup.toAddGroup
AddSubgroup.zmultiples
instTopologicalSpaceCircle
EquivLike.toFunLike
Homeomorph.instEquivLike
homeomorphCircle'
ContinuousMap
ContinuousMap.instFunLike
Circle.exp
β€”Nat.instAtLeastTwoHAddOfNat
homeomorphCircle'_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
Circle
AddCircle
Real
Real.instAddCommGroup
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
instTopologicalSpaceCircle
QuotientAddGroup.instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
AddCommGroup.toAddGroup
AddSubgroup.zmultiples
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
homeomorphCircle'
Complex.arg
Complex
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
β€”Nat.instAtLeastTwoHAddOfNat
homeomorphCircle_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
AddCircle
Real
Real.instAddCommGroup
Circle
QuotientAddGroup.instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
AddCommGroup.toAddGroup
AddSubgroup.zmultiples
instTopologicalSpaceCircle
EquivLike.toFunLike
Homeomorph.instEquivLike
homeomorphCircle
toCircle
β€”QuotientAddGroup.induction_on
Real.instIsStrictOrderedRing
instOrderTopologyReal
homeomorphCircle.eq_1
Homeomorph.trans_apply
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
injective_toCircle πŸ“–mathematicalβ€”AddCircle
Real
Real.instAddCommGroup
Circle
toCircle
β€”QuotientAddGroup.induction_on
Nat.instAtLeastTwoHAddOfNat
Circle.exp_eq_exp
QuotientAddGroup.eq
zsmul_eq_mul
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
sub_eq_zero_of_eq
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Real.pi_pos
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
neg_eq_zero
scaled_exp_map_periodic πŸ“–mathematicalβ€”Function.Periodic
Real
Circle
Real.instAdd
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
Circle.exp
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
eq_or_ne
div_zero
add_zero
MulZeroClass.zero_mul
Circle.exp_zero
mul_add
Distrib.leftDistribClass
div_mul_cancelβ‚€
Circle.periodic_exp
toCircle_add πŸ“–mathematicalβ€”toCircle
AddCircle
Real
Real.instAddCommGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
QuotientAddGroup.instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
AddCommGroup.toAddGroup
AddSubgroup.zmultiples
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroupReal
Circle
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Circle.instCommGroup
β€”QuotientAddGroup.induction_on
Nat.instAtLeastTwoHAddOfNat
mul_add
Distrib.leftDistribClass
Circle.exp_add
toCircle_apply_mk πŸ“–mathematicalβ€”toCircle
Real
AddCommGroup.toAddGroup
Real.instAddCommGroup
AddSubgroup.zmultiples
DFunLike.coe
ContinuousMap
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
Circle.exp
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”β€”
toCircle_neg πŸ“–mathematicalβ€”toCircle
AddCircle
Real
Real.instAddCommGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
QuotientAddGroup.Quotient.addCommGroup
AddSubgroup.zmultiples
AddCommGroup.toAddGroup
Circle
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Circle.instCommGroup
β€”RightCancelSemigroup.toIsRightCancelMul
AddSubgroup.normal_of_comm
neg_add_cancel
toCircle_zero
inv_mul_cancel
toCircle_nsmul πŸ“–mathematicalβ€”toCircle
AddCircle
Real
Real.instAddCommGroup
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroupReal
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Circle
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Circle.instCommGroup
β€”zero_nsmul
toCircle_zero
pow_zero
succ_nsmul
toCircle_add
pow_succ
toCircle_zero πŸ“–mathematicalβ€”toCircle
AddCircle
Real
Real.instAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
QuotientAddGroup.Quotient.addCommGroup
AddSubgroup.zmultiples
AddCommGroup.toAddGroup
Circle
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Circle.instCommGroup
β€”AddSubgroup.normal_of_comm
QuotientAddGroup.mk_zero
Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
Circle.exp_zero
toCircle_zsmul πŸ“–mathematicalβ€”toCircle
AddCircle
Real
Real.instAddCommGroup
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
QuotientAddGroup.Quotient.addGroup
AddCommGroup.toAddGroup
AddSubgroup.zmultiples
AddSubgroup.normal_of_comm
Circle
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
Circle.instCommGroup
β€”AddSubgroup.normal_of_comm
natCast_zsmul
toCircle_nsmul
zpow_natCast
negSucc_zsmul
toCircle_neg
zpow_negSucc

Circle

Definitions

NameCategoryTheorems
argEquiv πŸ“–CompOp
2 mathmath: argEquiv_symm_apply, argEquiv_apply_coe
argPartialEquiv πŸ“–CompOp
4 mathmath: argPartialEquiv_source, argPartialEquiv_target, argPartialEquiv_symm_apply, argPartialEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
argEquiv_apply_coe πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
DFunLike.coe
Equiv
Circle
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
argEquiv
Complex.arg
Complex
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
β€”β€”
argEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Set.Elem
Real
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
Circle
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
argEquiv
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
Set
Set.instMembership
β€”β€”
argPartialEquiv_apply πŸ“–mathematicalβ€”PartialEquiv.toFun
Circle
Real
argPartialEquiv
Complex
Complex.arg
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
β€”β€”
argPartialEquiv_source πŸ“–mathematicalβ€”PartialEquiv.source
Circle
Real
argPartialEquiv
Set.univ
β€”β€”
argPartialEquiv_symm_apply πŸ“–mathematicalβ€”PartialEquiv.toFun
Real
Circle
PartialEquiv.symm
argPartialEquiv
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
β€”β€”
argPartialEquiv_target πŸ“–mathematicalβ€”PartialEquiv.target
Circle
Real
argPartialEquiv
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
β€”β€”
arg_eq_arg πŸ“–mathematicalβ€”Complex.arg
Complex
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
β€”injective_arg
arg_exp πŸ“–mathematicalReal
Real.instLT
Real.instNeg
Real.pi
Real.instLE
Complex.arg
Complex
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
DFunLike.coe
ContinuousMap
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
β€”coe_exp
Complex.exp_mul_I
Complex.arg_cos_add_sin_mul_I
exp_add_two_pi πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
Real.instAdd
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”periodic_exp
exp_arg πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
Complex.arg
Complex
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
β€”injective_arg
arg_exp
Complex.neg_pi_lt_arg
Complex.arg_le_pi
exp_eq_exp πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
Real.instAdd
Real.instMul
Real.instIntCast
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
coe_exp
Complex.exp_eq_exp_iff_exists_int
mul_assoc
add_mul
Distrib.rightDistribClass
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
Complex.I_ne_zero
exp_eq_one πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
Real.instMul
Real.instIntCast
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
Complex.ofReal_mul
exp_inj πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
AddCommGroup.ModEq
Real.instAddCommMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
zsmul_eq_mul
exp_sub
exp_int_mul_two_pi πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
Real.instMul
Real.instIntCast
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
β€”ext
Nat.instAtLeastTwoHAddOfNat
exp_intCast_mul
exp_two_pi
one_zpow
exp_sub_two_pi πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
Real.instSub
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”Function.Periodic.sub_eq
Nat.instAtLeastTwoHAddOfNat
periodic_exp
exp_two_pi πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
β€”Nat.instAtLeastTwoHAddOfNat
Function.Periodic.eq
periodic_exp
exp_zero
exp_two_pi_mul_int πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.instIntCast
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
β€”Nat.instAtLeastTwoHAddOfNat
mul_comm
exp_int_mul_two_pi
injective_arg πŸ“–mathematicalβ€”Circle
Real
Complex.arg
Complex
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
β€”Complex.ext_norm_arg
norm_coe
invOn_arg_exp πŸ“–mathematicalβ€”Set.InvOn
Real
Circle
Complex
Complex.arg
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
Set.univ
β€”PartialEquiv.invOn
isAddQuotientCoveringMap_exp πŸ“–mathematicalβ€”IsAddQuotientCoveringMap
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
exp
AddSubgroup
Real.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
AddSubgroup.toAddGroup
AddAction.instAddAction
AddTorsor.toAddAction
addGroupIsAddTorsor
β€”Nat.instAtLeastTwoHAddOfNat
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
RCLike.charZero_rclike
ext
AddCircle.scaled_exp_map_periodic
div_self
one_mul
AddCircle.homeomorphCircle_apply
Function.Periodic.lift.congr_simp
IsAddQuotientCoveringMap.homeomorph_comp
AddCircle.isAddQuotientCoveringMap_coe
instIsTopologicalAddGroupReal
Int.instDiscreteTopologySubtypeRealMemAddSubgroupZmultiples
isCoveringMap_exp πŸ“–mathematicalβ€”IsCoveringMap
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
exp
β€”IsAddQuotientCoveringMap.isCoveringMap
Nat.instAtLeastTwoHAddOfNat
isAddQuotientCoveringMap_exp
isQuotientCoveringMap_npow πŸ“–mathematicalβ€”IsQuotientCoveringMap
Circle
instTopologicalSpaceCircle
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.ker
Monoid.toMulOneClass
powMonoidHom
CommGroup.toCommMonoid
Subgroup.toGroup
MulAction.instMulAction
Monoid.toMulAction
β€”isQuotientCoveringMap_zpow
isQuotientCoveringMap_zpow πŸ“–mathematicalβ€”IsQuotientCoveringMap
Circle
instTopologicalSpaceCircle
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.ker
Monoid.toMulOneClass
DivInvMonoid.toMonoid
zpowGroupHom
CommGroup.toDivisionCommMonoid
Subgroup.toGroup
MulAction.instMulAction
Monoid.toMulAction
β€”RCLike.charZero_rclike
one_ne_zero
NeZero.charZero_one
Topology.IsQuotientMap.isQuotientCoveringMap_of_isDiscrete_ker_monoidHom
instIsTopologicalGroup
Topology.IsQuotientMap.of_comp
Homeomorph.continuous
continuous_zpow
AddSubgroup.normal_of_comm
ext
AddCircle.homeomorphCircle_apply
AddCircle.toCircle_zsmul
Topology.IsQuotientMap.comp
Homeomorph.isQuotientMap
IsUnit.isQuotientMap_zsmul
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
isQuotientMap_quotient_mk'
Set.Finite.isDiscrete
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Set.Finite.of_preimage
Set.ext
AddCircle.injective_toCircle
AddCircle.toCircle_zero
AddCircle.finite_torsion_of_isSMulRegular_int
zsmul_eq_mul
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Real.instIsDomain
Homeomorph.surjective
leftInverse_exp_arg πŸ“–mathematicalβ€”Circle
Real
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
Complex
Complex.arg
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
β€”exp_arg
periodic_exp πŸ“–mathematicalβ€”Function.Periodic
Real
Circle
Real.instAdd
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
exp_eq_exp
Int.cast_one
one_mul
surjOn_exp_neg_pi_pi πŸ“–mathematicalβ€”Set.SurjOn
Real
Circle
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
exp
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
Set.univ
β€”PartialEquiv.surjOn

Real.Angle

Definitions

NameCategoryTheorems
toCircle πŸ“–CompOp
12 mathmath: toCircle_add, Orientation.rotation_map_complex, coe_toCircle, toCircle_zero, arg_toCircle, toCircle_coe, Orientation.kahler_rotation_left', Orientation.kahler_rotation_left, toCircle_neg, Orientation.kahler_rotation_right, AddCircle.homeomorphCircle'_apply, Complex.rotation

Theorems

NameKindAssumesProvesValidatesDepends On
arg_toCircle πŸ“–mathematicalβ€”coe
Complex.arg
Complex
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
toCircle
β€”induction_on
toCircle_coe
Circle.coe_exp
Complex.exp_mul_I
Complex.ofReal_cos
Complex.ofReal_sin
cos_coe
sin_coe
Complex.arg_cos_add_sin_mul_I_coe_angle
coe_toCircle πŸ“–mathematicalβ€”Complex
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SetLike.instMembership
Submonoid.instSetLike
Submonoid.unitSphere
toCircle
Complex.instAdd
Complex.ofReal
cos
Complex.instMul
sin
Complex.I
β€”induction_on
Complex.exp_mul_I
Complex.ofReal_cos
Complex.ofReal_sin
toCircle_add πŸ“–mathematicalβ€”toCircle
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Circle
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Circle.instCommGroup
β€”induction_on
Circle.exp_add
toCircle_coe πŸ“–mathematicalβ€”toCircle
coe
DFunLike.coe
ContinuousMap
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
ContinuousMap.instFunLike
Circle.exp
β€”β€”
toCircle_neg πŸ“–mathematicalβ€”toCircle
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Circle
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Circle.instCommGroup
β€”induction_on
Circle.exp_neg
toCircle_zero πŸ“–mathematicalβ€”toCircle
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Circle
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Circle.instCommGroup
β€”coe_zero
toCircle_coe
Circle.exp_zero

(root)

Definitions

NameCategoryTheorems
Circle πŸ“–CompOp
148 mathmath: Circle.periodic_exp, Real.hasFDerivAt_fourierChar_neg_bilinear_left, Complex.UnitDisc.instIsScalarTower_circle, Circle.exp_arg, Circle.injective_arg, AddCircle.homeomorphCircle'_apply_mk, Real.fourierIntegral_eq, Real.Angle.toCircle_add, Real.fderiv_fourierChar_neg_bilinear_right_apply, Circle.exp_natCast_mul, AddCircle.toCircle_add, Complex.UnitDisc.instSMulCommClass_closedBall_circle, rotation_injective, Circle.starRingEnd_addChar, AddCircle.homeomorphCircle'_symm_apply, Circle.isAddQuotientCoveringMap_exp, tendsto_integral_exp_inner_smul_cocompact_of_continuous_compact_support, rotation_apply, toMatrix_rotation, Circle.exp_eq_exp, Circle.exp_two_pi_mul_int, AddCircle.scaled_exp_map_periodic, Circle.argPartialEquiv_source, Circle.instIsScalarTower, Complex.UnitDisc.coe_smul_circle, Complex.UnitDisc.instIsScalarTower_circle_circle, Complex.UnitDisc.instSMulCommClass_circle_left, AddChar.zmod_add, instIsManifoldRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, tendsto_integral_exp_smul_cocompact, instLieGroupRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, Real.fourier_real_eq, Circle.smul_def, Circle.exp_two_pi, Real.fourierIntegral_convergent_iff', Real.Angle.toCircle_zero, Circle.exp_sub, Circle.isQuotientCoveringMap_zpow, Real.continuous_probChar, Circle.instSMulCommClass_left, Circle.exp_neg, Circle.instIsTopologicalGroup, Circle.coe_inv_eq_conj, Circle.coe_mul, Circle.coe_pow, Circle.exp_inj, fourierIntegral_eq_half_sub_half_period_translate, Circle.exp_add_two_pi, Circle.invOn_arg_exp, Circle.instSMulCommClass_right, Circle.instContinuousSMul, linear_isometry_complex, Real.Angle.toCircle_coe, Circle.star_addChar, rotationOf_rotation, bijective_rootsOfUnityAddChar, AddCircle.injective_toCircle, Real.fourier_eq, AddCircle.toCircle_zero, AddCircle.continuous_toCircle, Circle.exp_add, tendsto_integral_exp_smul_cocompact_of_inner_product, AddCircle.toCircle_zsmul, surjective_rootsOfUnityCircleEquiv_comp_rootsOfUnityAddChar, Circle.leftInverse_exp_arg, Circle.instIsUniformGroup, Circle.argEquiv_symm_apply, AddCircle.toCircle_apply_mk, Circle.isQuotientCoveringMap_npow, rotation_trans, instHasEnoughRootsOfUnityCircle, Real.probChar_apply', Circle.instCompactSpace, Circle.exp_zero, Complex.UnitDisc.instSMulCommClass_circle_right, Real.fourierIntegral_convergent_iff, Real.hasDerivAt_fourierChar, linearEquiv_det_rotation, Circle.coe_eq_one, Real.fourierChar_apply, Real.fourier_bilin_convolution_eq_integral, Circle.exp_int_mul_two_pi, Real.tendsto_integral_exp_smul_cocompact, fourierIntegral_half_period_translate, Circle.surjOn_exp_neg_pi_pi, Circle.coe_inv, Circle.exp_intCast_mul, Real.Angle.toCircle_neg, PontryaginDual.map_apply, Real.fourierChar_apply', Real.differentiable_fourierChar, Real.continuous_fourierChar, Circle.argPartialEquiv_target, rootsOfUnityCircleEquiv_comp_rootsOfUnityAddChar_val, ZMod.toCircle_intCast, ZMod.toCircle_natCast, Real.deriv_fourierChar, Complex.UnitDisc.instSMulCommClass_circle_closedBall, Real.differentiable_fourierChar_neg_bilinear_right, ZMod.injective_toCircle, Circle.coeHom_apply, rootsOfUnityCircleEquiv_apply, VectorFourier.fourierIntegral_comp_add_right, AddChar.zmod_zero, isLocalHomeomorph_circleExp, tendsto_integral_exp_inner_smul_cocompact, det_rotation, Fourier.fourierIntegral_def, Circle.expHom_apply, rotation_symm, Real.hasFDerivAt_fourierChar_neg_bilinear_right, ZMod.toCircle_apply, Circle.arg_exp, Real.differentiable_fourierChar_neg_bilinear_left, Circle.coe_exp, Circle.exp_zsmul, Circle.exp_eq_one, Circle.toUnits_apply, Real.fourierInv_eq, Real.probChar_apply, Circle.isCoveringMap_exp, AddChar.zmod_intCast, AddCircle.toCircle_nsmul, Circle.coe_zpow, VectorFourier.hasFDerivAt_fourierChar_smul, Real.fourierIntegral_real_eq, AddCircle.homeomorphCircle'_apply, AddCircle.homeomorphCircle_apply, AddChar.zmodAddEquiv_apply, Circle.exp_sub_two_pi, Circle.coe_div, Circle.argPartialEquiv_symm_apply, Circle.coe_one, AddChar.zmod_injective, Real.fourierIntegralInv_eq, Real.fderiv_fourierChar_neg_bilinear_left_apply, AddCircle.toCircle_neg, Fourier.fourierIntegral_comp_add_right, Circle.argEquiv_apply_coe, ZMod.rootsOfUnityAddChar_val, ZMod.toCircle_eq_circleExp, Circle.exp_nsmul, Complex.UnitDisc.coe_circle_smul, ZMod.stdAddChar_apply, Circle.argPartialEquiv_apply, MeasureTheory.charFun_eq_integral_probChar, Circle.norm_smul, contMDiff_circleExp

Theorems

NameKindAssumesProvesValidatesDepends On
isLocalHomeomorph_circleExp πŸ“–mathematicalβ€”IsLocalHomeomorph
Real
Circle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceCircle
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Circle.exp
β€”IsCoveringMap.isLocalHomeomorph
Circle.isCoveringMap_exp

---

← Back to Index