Documentation

Mathlib.Analysis.SpecialFunctions.Complex.Circle

Maps on the unit circle #

In this file we prove some basic lemmas about Circle.exp and the restriction of Complex.arg to the unit circle. These two maps define a partial equivalence between Circle and ℝ, see Circle.argPartialEquiv and Circle.argEquiv, that sends the whole circle to (-Ο€, Ο€].

@[simp]
theorem Circle.arg_eq_arg {z w : Circle} :
(↑z).arg = (↑w).arg ↔ z = w
theorem Circle.arg_exp {x : ℝ} (h₁ : -Real.pi < x) (hβ‚‚ : x ≀ Real.pi) :
(↑(exp x)).arg = x
@[simp]
theorem Circle.exp_arg (z : Circle) :
exp (↑z).arg = z

Complex.arg ∘ (↑) and Circle.exp define a partial equivalence between Circle and ℝ with source = Set.univ and target = Set.Ioc (-Ο€) Ο€.

Equations
    Instances For
      noncomputable def Circle.argEquiv :

      Complex.arg and Circle.exp ∘ (↑) define an equivalence between Circle and (-Ο€, Ο€].

      Equations
        Instances For
          @[simp]
          theorem Circle.argEquiv_apply_coe (z : Circle) :
          ↑(argEquiv z) = (↑z).arg
          theorem Circle.exp_eq_exp {x y : ℝ} :
          exp x = exp y ↔ βˆƒ (m : β„€), x = y + ↑m * (2 * Real.pi)
          theorem Circle.exp_eq_one {r : ℝ} :
          exp r = 1 ↔ βˆƒ (n : β„€), r = ↑n * (2 * Real.pi)
          noncomputable def Real.Angle.toCircle (ΞΈ : Angle) :

          Circle.exp, applied to a Real.Angle.

          Equations
            Instances For
              theorem Real.Angle.coe_toCircle (ΞΈ : Angle) :
              ↑θ.toCircle = ↑θ.cos + ↑θ.sin * Complex.I
              @[simp]
              theorem Real.Angle.toCircle_add (θ₁ ΞΈβ‚‚ : Angle) :
              (θ₁ + ΞΈβ‚‚).toCircle = θ₁.toCircle * ΞΈβ‚‚.toCircle
              @[simp]
              theorem Real.Angle.arg_toCircle (ΞΈ : Angle) :
              ↑(↑θ.toCircle).arg = ΞΈ

              Map from AddCircle to Circle #

              noncomputable def AddCircle.toCircle {T : ℝ} :
              AddCircle T β†’ Circle

              The canonical map fun x => exp (2 Ο€ i x / T) from ℝ / β„€ β€’ T to the unit circle in β„‚. If T = 0 we understand this as the constant function 1.

              Equations
                Instances For

                  The homeomorphism between AddCircle (2 * Ο€) and Circle.

                  Equations
                    Instances For

                      The homeomorphism between AddCircle and Circle.

                      Equations
                        Instances For