Maps on the unit circle #
In this file we prove some basic lemmas about Circle.exp and the restriction of Complex.arg
to the unit circle. These two maps define a partial equivalence between Circle and β, see
Circle.argPartialEquiv and Circle.argEquiv, that sends the whole circle to (-Ο, Ο].
@[simp]
Complex.arg β (β) and Circle.exp define a partial equivalence between Circle and β
with source = Set.univ and target = Set.Ioc (-Ο) Ο.
Equations
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
Complex.arg and Circle.exp β (β) define an equivalence between Circle and (-Ο, Ο].
Equations
Instances For
@[simp]
@[simp]
theorem
Circle.invOn_arg_exp :
Set.InvOn (Complex.arg β Subtype.val) (βexp) (Set.Ioc (-Real.pi) Real.pi) Set.univ
@[simp]
@[simp]
@[simp]
@[simp]
theorem
AddCircle.scaled_exp_map_periodic
{T : β}
:
Function.Periodic (fun (x : β) => Circle.exp (2 * Real.pi / T * x)) T
The canonical map fun x => exp (2 Ο i x / T) from β / β€ β’ T to the unit circle in β.
If T = 0 we understand this as the constant function 1.
Equations
Instances For
@[simp]
@[simp]
theorem
Circle.isAddQuotientCoveringMap_exp :
IsAddQuotientCoveringMap βexp β₯(AddSubgroup.zmultiples (2 * Real.pi))
theorem
Circle.isQuotientCoveringMap_zpow
(n : β€)
[NeZero n]
:
IsQuotientCoveringMap (fun (x : Circle) => x ^ n) β₯(zpowGroupHom n).ker
theorem
Circle.isQuotientCoveringMap_npow
(n : β)
[NeZero n]
:
IsQuotientCoveringMap (fun (x : Circle) => x ^ n) β₯(powMonoidHom n).ker