Documentation Verification Report

Cotangent

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Trigonometric/Cotangent.lean

Statistics

MetricCount
DefinitionscotTerm, sineTerm
2
Theoremscot_eq_exp_ratio, cot_pi_eq_exp_ratio, HasProdLocallyUniformlyOn_euler_sin_prod, HasProdUniformlyOn_sineTerm_prod_on_compact, Summable_cotTerm, cotTerm_identity, cot_pi_mul_contDiffWithinAt, cot_series_rep, cot_series_rep', differentiableOn_iteratedDerivWithin_cotTerm, eqOn_iteratedDerivWithin_cotTerm_integerComplement, eqOn_iteratedDerivWithin_cotTerm_upperHalfPlaneSet, eqOn_iteratedDeriv_cotTerm, euler_sineTerm_tprod, iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_div_pow, iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_zpow, iteratedDerivWithin_cot_sub_inv_eq_add_mul_tsum, logDeriv_prod_sineTerm_eq_sum_cotTerm, logDeriv_sin_div_eq_cot, logDeriv_sineTerm_eq_cotTerm, multipliableUniformlyOn_euler_sin_prod_on_compact, multipliable_sineTerm, pi_mul_cot_pi_q_exp, sin_pi_mul_ne_zero, sineTerm_ne_zero, summableLocallyUniformlyOn_iteratedDerivWithin_cotTerm, summable_cotTerm, tendsto_euler_sin_prod', tendsto_logDeriv_euler_cot_sub, tendsto_logDeriv_euler_sin_div
30
Total32

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
cot_eq_exp_ratio πŸ“–mathematicalβ€”cot
Complex
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
exp
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
I
instOne
instSub
β€”Nat.instAtLeastTwoHAddOfNat
cot.eq_1
sin.eq_1
cos.eq_1
mul_add
Distrib.leftDistribClass
exp_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
mul_one
add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Nat.cast_one
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.RingNF.mul_assoc_rev
mul_assoc
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Meta.NormNum.isNat_eq_false
instCharZero
Nat.cast_zero
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.div_pf
cot_pi_eq_exp_ratio πŸ“–mathematicalβ€”cot
Complex
instMul
ofReal
Real.pi
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
exp
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
I
instOne
instSub
β€”Nat.instAtLeastTwoHAddOfNat
cot_eq_exp_ratio
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.div_pf
mul_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.add_neg

(root)

Definitions

NameCategoryTheorems
cotTerm πŸ“–CompOp
11 mathmath: differentiableOn_iteratedDerivWithin_cotTerm, summableLocallyUniformlyOn_iteratedDerivWithin_cotTerm, Summable_cotTerm, eqOn_iteratedDerivWithin_cotTerm_upperHalfPlaneSet, eqOn_iteratedDeriv_cotTerm, tendsto_logDeriv_euler_cot_sub, cotTerm_identity, logDeriv_prod_sineTerm_eq_sum_cotTerm, summable_cotTerm, eqOn_iteratedDerivWithin_cotTerm_integerComplement, logDeriv_sineTerm_eq_cotTerm
sineTerm πŸ“–CompOp
9 mathmath: HasProdUniformlyOn_sineTerm_prod_on_compact, tendsto_logDeriv_euler_sin_div, HasProdLocallyUniformlyOn_euler_sin_prod, multipliable_sineTerm, euler_sineTerm_tprod, logDeriv_prod_sineTerm_eq_sum_cotTerm, tendsto_euler_sin_prod', multipliableUniformlyOn_euler_sin_prod_on_compact, logDeriv_sineTerm_eq_cotTerm

Theorems

NameKindAssumesProvesValidatesDepends On
HasProdLocallyUniformlyOn_euler_sin_prod πŸ“–mathematicalβ€”HasProdLocallyUniformlyOn
Complex
CommRing.toCommMonoid
Complex.commRing
Complex.instAdd
Complex.instOne
sineTerm
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.sin
Complex.instMul
Complex.ofReal
Real.pi
Complex.integerComplement
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
UniformSpace.toTopologicalSpace
β€”hasProdLocallyUniformlyOn_of_forall_compact
Complex.isOpen_compl_range_intCast
locallyCompact_of_proper
Complex.instProperSpace
HasProdUniformlyOn_sineTerm_prod_on_compact
HasProdUniformlyOn_sineTerm_prod_on_compact πŸ“–mathematicalSet
Complex
Set.instHasSubset
Complex.integerComplement
IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
HasProdUniformlyOn
CommRing.toCommMonoid
Complex.commRing
Complex.instAdd
Complex.instOne
sineTerm
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.sin
Complex.instMul
Complex.ofReal
Real.pi
β€”HasProdUniformlyOn.congr_right
MultipliableUniformlyOn.hasProdUniformlyOn
multipliableUniformlyOn_euler_sin_prod_on_compact
euler_sineTerm_tprod
Summable_cotTerm πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.integerComplement
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
cotTerm
SummationFilter.unconditional
β€”summable_cotTerm
cotTerm_identity πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.integerComplement
cotTerm
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instOne
Complex.instAdd
Complex.instSub
β€”Nat.instAtLeastTwoHAddOfNat
one_div_add_one_div
sub_eq_add_neg
neg_add_rev
Int.cast_add
Int.cast_neg
Int.cast_one
Int.cast_natCast
Complex.integerComplement_add_ne_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Meta.NormNum.instAtLeastTwo
cot_pi_mul_contDiffWithinAt πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.integerComplement
ContDiffWithinAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
WithTop.some
ENat
Complex.cot
Complex.instMul
Complex.ofReal
Real.pi
UpperHalfPlane.upperHalfPlaneSet
β€”ContDiffWithinAt.div
ContDiffWithinAt.div_const
ContDiffWithinAt.add
ContDiffWithinAt.cexp
ContDiffWithinAt.mul
contDiffWithinAt_const
contDiffWithinAt_fun_id
ContDiffWithinAt.neg
ContDiffWithinAt.sub
sin_pi_mul_ne_zero
cot_series_rep πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.integerComplement
Complex.instMul
Complex.ofReal
Real.pi
Complex.cot
Complex.instAdd
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instOne
tsum
PNat
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instSub
Complex.instNatCast
PNat.val
SummationFilter.unconditional
β€”tsum_pnat_eq_tsum_succ
cot_series_rep'
one_div
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
cot_series_rep' πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.integerComplement
Complex.instSub
Complex.instMul
Complex.ofReal
Real.pi
Complex.cot
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instOne
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instAdd
Complex.instNatCast
SummationFilter.unconditional
β€”HasSum.tsum_eq
Complex.instT2Space
SummationFilter.instNeBotUnconditional
Summable.hasSum_iff_tendsto_nat
summable_cotTerm
tendsto_logDeriv_euler_cot_sub
differentiableOn_iteratedDerivWithin_cotTerm πŸ“–mathematicalβ€”DifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
iteratedDerivWithin
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
cotTerm
UpperHalfPlane.upperHalfPlaneSet
β€”DifferentiableOn.const_mul
DifferentiableOn.add
DifferentiableOn.zpow
DifferentiableOn.add_const
differentiableOn_id
neg_add_rev
Int.cast_add
Int.cast_neg
Int.cast_one
Int.cast_natCast
UpperHalfPlane.ne_intCast
DifferentiableOn.sub_const
DifferentiableOn.congr
eqOn_iteratedDerivWithin_cotTerm_upperHalfPlaneSet
eqOn_iteratedDerivWithin_cotTerm_integerComplement πŸ“–mathematicalβ€”Set.EqOn
Complex
iteratedDerivWithin
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
cotTerm
Complex.integerComplement
Complex.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instNeg
Complex.instOne
Complex.instNatCast
Nat.factorial
Complex.instAdd
DivInvMonoid.toZPow
Complex.instDivInvMonoid
Complex.instSub
β€”Set.EqOn.trans
iteratedDerivWithin_of_isOpen
Complex.isOpen_compl_range_intCast
eqOn_iteratedDeriv_cotTerm
eqOn_iteratedDerivWithin_cotTerm_upperHalfPlaneSet πŸ“–mathematicalβ€”Set.EqOn
Complex
iteratedDerivWithin
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
cotTerm
UpperHalfPlane.upperHalfPlaneSet
Complex.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instNeg
Complex.instOne
Complex.instNatCast
Nat.factorial
Complex.instAdd
DivInvMonoid.toZPow
Complex.instDivInvMonoid
Complex.instSub
β€”Set.EqOn.trans
iteratedDerivWithin_congr_right_of_isOpen
UpperHalfPlane.isOpen_upperHalfPlaneSet
Complex.isOpen_compl_range_intCast
Complex.upperHalfPlane_inter_integerComplement
eqOn_iteratedDerivWithin_cotTerm_integerComplement
UpperHalfPlane.coe_mem_integerComplement
eqOn_iteratedDeriv_cotTerm πŸ“–mathematicalβ€”Set.EqOn
Complex
iteratedDeriv
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
cotTerm
Complex.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instNeg
Complex.instOne
Complex.instNatCast
Nat.factorial
Complex.instAdd
DivInvMonoid.toZPow
Complex.instDivInvMonoid
Complex.instSub
Complex.integerComplement
β€”Pi.add_def
iteratedDeriv_add
sub_eq_add_neg
neg_add_rev
one_div
Int.cast_add
Int.cast_neg
Int.cast_one
Int.cast_natCast
ContDiffOn.contDiffAt
IsOpen.mem_nhds
Complex.isOpen_compl_range_intCast
iter_deriv_inv_linear_sub
iter_deriv_inv_linear
iteratedDeriv_eq_iterate
one_mul
one_pow
mul_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
euler_sineTerm_tprod πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.integerComplement
tprod
CommRing.toCommMonoid
Complex.commRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instAdd
Complex.instOne
sineTerm
SummationFilter.unconditional
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.sin
Complex.instMul
Complex.ofReal
Real.pi
β€”Multipliable.hasProd_iff
Complex.instT2Space
SummationFilter.instNeBotUnconditional
multipliable_sineTerm
Multipliable.hasProd_iff_tendsto_nat
tendsto_euler_sin_prod'
Complex.integerComplement.ne_zero
iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_div_pow πŸ“–mathematicalComplex
Set
Set.instMembership
UpperHalfPlane.upperHalfPlaneSet
iteratedDerivWithin
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.instMul
Complex.ofReal
Real.pi
Complex.cot
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instNeg
Complex.instOne
Complex.instNatCast
Nat.factorial
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instAdd
Complex.instIntCast
SummationFilter.unconditional
β€”Nat.cast_one
zpow_neg_coe_of_pos
one_div
iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_zpow
iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_zpow πŸ“–mathematicalComplex
Set
Set.instMembership
UpperHalfPlane.upperHalfPlaneSet
iteratedDerivWithin
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.instMul
Complex.ofReal
Real.pi
Complex.cot
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instNeg
Complex.instOne
Complex.instNatCast
Nat.factorial
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DivInvMonoid.toZPow
Complex.instDivInvMonoid
Complex.instAdd
Complex.instIntCast
SummationFilter.unconditional
β€”AddRightCancelSemigroup.toIsRightCancelAdd
add_comm
iteratedDerivWithin_cot_sub_inv_eq_add_mul_tsum
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
iteratedDerivWithin_cot_sub_inv_eq_add_mul_tsum πŸ“–mathematicalComplex
Set
Set.instMembership
UpperHalfPlane.upperHalfPlaneSet
iteratedDerivWithin
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.instSub
Complex.instMul
Complex.ofReal
Real.pi
Complex.cot
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instOne
Complex.instAdd
Complex.instNeg
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instNatCast
Nat.factorial
DivInvMonoid.toZPow
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instIntCast
SummationFilter.unconditional
β€”one_div
neg_mul
neg_add_cancel_left
iteratedDerivWithin_congr
cot_series_rep'
UpperHalfPlane.coe_mem_integerComplement
logDeriv_prod_sineTerm_eq_sum_cotTerm πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.integerComplement
logDeriv
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
NormedAlgebra.id
NontriviallyNormedField.toNormedField
Finset.prod
CommRing.toCommMonoid
Complex.commRing
Finset.range
Complex.instAdd
Complex.instOne
sineTerm
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
cotTerm
β€”logDeriv_prod
sineTerm_ne_zero
DifferentiableAt.const_add
DifferentiableAt.div_const
DifferentiableAt.fun_neg
DifferentiableAt.fun_pow
differentiableAt_id
Finset.sum_congr
logDeriv_sineTerm_eq_cotTerm
logDeriv_sin_div_eq_cot πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.integerComplement
logDeriv
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
NormedAlgebra.id
NontriviallyNormedField.toNormedField
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.sin
Complex.instMul
Complex.ofReal
Real.pi
Complex.instSub
Complex.cot
Complex.instOne
β€”logDeriv_div
sin_pi_mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Real.pi_ne_zero
Complex.integerComplement.ne_zero
DifferentiableAt.comp
Complex.differentiableAt_sin
DifferentiableAt.const_mul
differentiableAt_id
logDeriv_comp
Complex.logDeriv_sin
deriv_const_mul
deriv_id''
logDeriv_const_mul
logDeriv_id'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
logDeriv_sineTerm_eq_cotTerm πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.integerComplement
logDeriv
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
NormedAlgebra.id
NontriviallyNormedField.toNormedField
Complex.instAdd
Complex.instOne
sineTerm
cotTerm
β€”Complex.integerComplement_add_ne_zero
sub_eq_add_neg
neg_add_rev
Int.cast_add
Int.cast_neg
Int.cast_one
Int.cast_natCast
Complex.integerComplement_pow_two_ne_pow_two
sub_ne_zero
Nat.instAtLeastTwoHAddOfNat
deriv_const_add'
deriv_div_const
deriv.fun_neg'
deriv_fun_pow
deriv_id''
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
neg_div
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Complex.instCharZero
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
mul_neg
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Meta.NormNum.isNat_natSub
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Meta.NormNum.isNat_mul
multipliableUniformlyOn_euler_sin_prod_on_compact πŸ“–mathematicalIsCompact
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
MultipliableUniformlyOn
CommRing.toCommMonoid
Complex.commRing
Complex.instAdd
Complex.instOne
sineTerm
β€”Summable.multipliableUniformlyOn_nat_one_add
NormedDivisionRing.to_normOneClass
Complex.instCompleteSpace
Filter.univ_mem'
Continuous.comp_continuousOn'
Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_id'
ContinuousOn.neg
IsTopologicalRing.toContinuousNeg
ContinuousOn.pow
continuousOn_id'
multipliable_sineTerm πŸ“–mathematicalβ€”Multipliable
Complex
CommRing.toCommMonoid
Complex.commRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instAdd
Complex.instOne
sineTerm
SummationFilter.unconditional
β€”multipliable_one_add_of_summable
NormedDivisionRing.to_normOneClass
Complex.instCompleteSpace
summable_pow_div_add
Complex.norm_div
norm_neg
norm_pow
NormedDivisionRing.toNormMulClass
Nat.cast_one
pi_mul_cot_pi_q_exp πŸ“–mathematicalβ€”Complex
Complex.instMul
Complex.ofReal
Real.pi
Complex.cot
UpperHalfPlane.coe
Complex.instSub
Complex.I
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.exp
SummationFilter.unconditional
β€”Nat.instAtLeastTwoHAddOfNat
div_mul_eq_div_mul_one_div
Complex.div_I
one_div
neg_mul
mul_neg
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.atom_pf'
Complex.cot_pi_eq_exp_ratio
tsum_geometric_of_norm_lt_one
UpperHalfPlane.norm_exp_two_pi_I_lt_one
add_comm
geom_series_mul_one_add
instHasSummableGeomSeries
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
sin_pi_mul_ne_zero πŸ“–β€”Complex
Set
Set.instMembership
Complex.integerComplement
β€”β€”Complex.sin_ne_zero_iff
mul_comm
mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
Complex.ofReal_ne_zero
Real.pi_ne_zero
Complex.instCharZero
sineTerm_ne_zero πŸ“–β€”Complex
Set
Set.instMembership
Complex.integerComplement
β€”β€”add_eq_zero_iff_eq_neg
neg_div'
eq_div_iff
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
Nat.cast_add_one_ne_zero
Complex.instCharZero
Complex.integerComplement_pow_two_ne_pow_two
one_mul
neg_neg
Int.cast_add
Int.cast_natCast
Int.cast_one
summableLocallyUniformlyOn_iteratedDerivWithin_cotTerm πŸ“–mathematicalβ€”SummableLocallyUniformlyOn
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
iteratedDerivWithin
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
cotTerm
UpperHalfPlane.upperHalfPlaneSet
β€”SummableLocallyUniformlyOn_of_locally_bounded
Complex.instCompleteSpace
locallyCompact_of_proper
Complex.instProperSpace
UpperHalfPlane.isOpen_upperHalfPlaneSet
CanLift.prf
Set.canLift
UpperHalfPlane.canLift
UpperHalfPlane.subset_verticalStrip_of_isCompact
Topology.IsEmbedding.isCompact_iff
UpperHalfPlane.isEmbedding_coe
Set.image_mono
summable_cotTerm πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.integerComplement
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
cotTerm
SummationFilter.unconditional
β€”Nat.instAtLeastTwoHAddOfNat
cotTerm_identity
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Summable.congr
EisensteinSeries.summable_linear_sub_mul_linear_add
Int.cast_one
mul_comm
mul_one
mul_inv_rev
Summable.comp_injective
SeminormedAddCommGroup.to_isUniformAddGroup
Complex.instCompleteSpace
CharZero.cast_injective
Int.instCharZero
one_div
Nat.cast_add
Nat.cast_one
summable_nat_add_iff
SeminormedAddCommGroup.toIsTopologicalAddGroup
tendsto_euler_sin_prod' πŸ“–mathematicalβ€”Filter.Tendsto
Complex
Finset.prod
CommRing.toCommMonoid
Complex.commRing
Finset.range
Complex.instAdd
Complex.instOne
sineTerm
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.sin
Complex.instMul
Complex.ofReal
Real.pi
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Filter.Tendsto.congr
Filter.Tendsto.mul_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.tendsto_euler_sin_prod
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Finset.prod_congr
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
neg_div
mul_neg
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
tendsto_logDeriv_euler_cot_sub πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.integerComplement
Filter.Tendsto
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Finset.range
cotTerm
Filter.atTop
Nat.instPreorder
nhds
Complex.instSub
Complex.instMul
Complex.ofReal
Real.pi
Complex.cot
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instOne
β€”logDeriv_sin_div_eq_cot
logDeriv_prod_sineTerm_eq_sum_cotTerm
tendsto_logDeriv_euler_sin_div
tendsto_logDeriv_euler_sin_div πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.integerComplement
Filter.Tendsto
logDeriv
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
NormedAlgebra.id
NontriviallyNormedField.toNormedField
Finset.prod
CommRing.toCommMonoid
Complex.commRing
Finset.range
Complex.instAdd
Complex.instOne
sineTerm
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.sin
Complex.instMul
Complex.ofReal
Real.pi
β€”Complex.logDeriv_tendsto
Complex.isOpen_compl_range_intCast
HasProdLocallyUniformlyOn.tendstoLocallyUniformlyOn_finsetRange
HasProdLocallyUniformlyOn_euler_sin_prod
Filter.univ_mem'
DifferentiableOn.fun_finset_prod
DifferentiableOn.const_add
DifferentiableOn.div_const
DifferentiableOn.fun_neg
DifferentiableOn.fun_pow
differentiableOn_id
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
sin_pi_mul_ne_zero
Real.pi_ne_zero
Complex.integerComplement.ne_zero

---

← Back to Index