π Source: Mathlib/Analysis/SpecialFunctions/Trigonometric/Cotangent.lean
cotTerm
sineTerm
cot_eq_exp_ratio
cot_pi_eq_exp_ratio
HasProdLocallyUniformlyOn_euler_sin_prod
HasProdUniformlyOn_sineTerm_prod_on_compact
Summable_cotTerm
cotTerm_identity
cot_pi_mul_contDiffWithinAt
cot_series_rep
cot_series_rep'
differentiableOn_iteratedDerivWithin_cotTerm
eqOn_iteratedDerivWithin_cotTerm_integerComplement
eqOn_iteratedDerivWithin_cotTerm_upperHalfPlaneSet
eqOn_iteratedDeriv_cotTerm
euler_sineTerm_tprod
iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_div_pow
iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_zpow
iteratedDerivWithin_cot_sub_inv_eq_add_mul_tsum
logDeriv_prod_sineTerm_eq_sum_cotTerm
logDeriv_sin_div_eq_cot
logDeriv_sineTerm_eq_cotTerm
multipliableUniformlyOn_euler_sin_prod_on_compact
multipliable_sineTerm
pi_mul_cot_pi_q_exp
sin_pi_mul_ne_zero
sineTerm_ne_zero
summableLocallyUniformlyOn_iteratedDerivWithin_cotTerm
summable_cotTerm
tendsto_euler_sin_prod'
tendsto_logDeriv_euler_cot_sub
tendsto_logDeriv_euler_sin_div
cot
Complex
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
exp
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
I
instOne
instSub
cot.eq_1
sin.eq_1
cos.eq_1
mul_add
Distrib.leftDistribClass
exp_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
mul_one
add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Nat.cast_one
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.RingNF.mul_assoc_rev
mul_assoc
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Meta.NormNum.isNat_eq_false
instCharZero
Nat.cast_zero
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.div_pf
ofReal
Real.pi
HasProdLocallyUniformlyOn
CommRing.toCommMonoid
Complex.commRing
Complex.instAdd
Complex.instOne
Complex.instDivInvMonoid
Complex.sin
Complex.instMul
Complex.ofReal
Complex.integerComplement
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
UniformSpace.toTopologicalSpace
hasProdLocallyUniformlyOn_of_forall_compact
Complex.isOpen_compl_range_intCast
locallyCompact_of_proper
Complex.instProperSpace
Set
Set.instHasSubset
IsCompact
HasProdUniformlyOn
HasProdUniformlyOn.congr_right
MultipliableUniformlyOn.hasProdUniformlyOn
Set.instMembership
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
SummationFilter.unconditional
Complex.instNatCast
Complex.instSub
one_div_add_one_div
sub_eq_add_neg
neg_add_rev
Int.cast_add
Int.cast_neg
Int.cast_one
Int.cast_natCast
Complex.integerComplement_add_ne_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
ContDiffWithinAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
WithTop.some
ENat
Complex.cot
UpperHalfPlane.upperHalfPlaneSet
ContDiffWithinAt.div
ContDiffWithinAt.div_const
ContDiffWithinAt.add
ContDiffWithinAt.cexp
ContDiffWithinAt.mul
contDiffWithinAt_const
contDiffWithinAt_fun_id
ContDiffWithinAt.neg
ContDiffWithinAt.sub
tsum
PNat
PNat.val
tsum_pnat_eq_tsum_succ
one_div
Nat.cast_add
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
HasSum.tsum_eq
Complex.instT2Space
SummationFilter.instNeBotUnconditional
Summable.hasSum_iff_tendsto_nat
DifferentiableOn
Complex.addCommGroup
Complex.instModuleSelf
iteratedDerivWithin
DifferentiableOn.const_mul
DifferentiableOn.add
DifferentiableOn.zpow
DifferentiableOn.add_const
differentiableOn_id
UpperHalfPlane.ne_intCast
DifferentiableOn.sub_const
DifferentiableOn.congr
Set.EqOn
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instNeg
Nat.factorial
DivInvMonoid.toZPow
Set.EqOn.trans
iteratedDerivWithin_of_isOpen
iteratedDerivWithin_congr_right_of_isOpen
UpperHalfPlane.isOpen_upperHalfPlaneSet
Complex.upperHalfPlane_inter_integerComplement
UpperHalfPlane.coe_mem_integerComplement
iteratedDeriv
Pi.add_def
iteratedDeriv_add
ContDiffOn.contDiffAt
IsOpen.mem_nhds
iter_deriv_inv_linear_sub
iter_deriv_inv_linear
iteratedDeriv_eq_iterate
one_pow
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
tprod
Multipliable.hasProd_iff
Multipliable.hasProd_iff_tendsto_nat
Complex.integerComplement.ne_zero
Complex.instIntCast
zpow_neg_coe_of_pos
AddRightCancelSemigroup.toIsRightCancelAdd
add_comm
neg_mul
neg_add_cancel_left
iteratedDerivWithin_congr
logDeriv
NormedAlgebra.id
NontriviallyNormedField.toNormedField
Finset.prod
Finset.range
Finset.sum
logDeriv_prod
DifferentiableAt.const_add
DifferentiableAt.div_const
DifferentiableAt.fun_neg
DifferentiableAt.fun_pow
differentiableAt_id
Finset.sum_congr
logDeriv_div
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Real.pi_ne_zero
DifferentiableAt.comp
Complex.differentiableAt_sin
DifferentiableAt.const_mul
logDeriv_comp
Complex.logDeriv_sin
deriv_const_mul
deriv_id''
logDeriv_const_mul
logDeriv_id'
Complex.integerComplement_pow_two_ne_pow_two
sub_ne_zero
deriv_const_add'
deriv_div_const
deriv.fun_neg'
deriv_fun_pow
neg_div
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.zpow'_ofNat
mul_neg
Mathlib.Meta.NormNum.isNat_natSub
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Meta.NormNum.isNat_mul
MultipliableUniformlyOn
Summable.multipliableUniformlyOn_nat_one_add
NormedDivisionRing.to_normOneClass
Complex.instCompleteSpace
Filter.univ_mem'
Continuous.comp_continuousOn'
Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_id'
ContinuousOn.neg
IsTopologicalRing.toContinuousNeg
ContinuousOn.pow
continuousOn_id'
Multipliable
multipliable_one_add_of_summable
summable_pow_div_add
Complex.norm_div
norm_neg
norm_pow
UpperHalfPlane.coe
Complex.I
Complex.exp
div_mul_eq_div_mul_one_div
Complex.div_I
Complex.cot_pi_eq_exp_ratio
tsum_geometric_of_norm_lt_one
UpperHalfPlane.norm_exp_two_pi_I_lt_one
geom_series_mul_one_add
instHasSummableGeomSeries
Complex.sin_ne_zero_iff
mul_comm
mul_right_injectiveβ
IsDomain.toIsCancelMulZero
instIsDomain
Complex.ofReal_ne_zero
add_eq_zero_iff_eq_neg
neg_div'
eq_div_iff
isReduced_of_noZeroDivisors
Nat.instCharZero
Nat.cast_add_one_ne_zero
neg_neg
SummableLocallyUniformlyOn
SummableLocallyUniformlyOn_of_locally_bounded
CanLift.prf
Set.canLift
UpperHalfPlane.canLift
UpperHalfPlane.subset_verticalStrip_of_isCompact
Topology.IsEmbedding.isCompact_iff
UpperHalfPlane.isEmbedding_coe
Set.image_mono
Summable.mul_left
Summable.congr
EisensteinSeries.summable_linear_sub_mul_linear_add
mul_inv_rev
Summable.comp_injective
SeminormedAddCommGroup.to_isUniformAddGroup
CharZero.cast_injective
Int.instCharZero
summable_nat_add_iff
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
Filter.Tendsto.congr
Filter.Tendsto.mul_const
Complex.tendsto_euler_sin_prod
Finset.prod_congr
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ
Complex.logDeriv_tendsto
HasProdLocallyUniformlyOn.tendstoLocallyUniformlyOn_finsetRange
DifferentiableOn.fun_finset_prod
DifferentiableOn.const_add
DifferentiableOn.div_const
DifferentiableOn.fun_neg
DifferentiableOn.fun_pow
---
β Back to Index