Documentation

Mathlib.Analysis.SpecialFunctions.Trigonometric.Cotangent

Cotangent #

This file contains lemmas about the cotangent function, including useful series expansions. In particular, we prove that π * cot (π * z) = π * I - 2 * π * I * ∑' n : ℕ, Complex.exp (2 * π * I * z) ^ n as well as the infinite sum representation of cotangent (also known as the Mittag-Leffler expansion): π * cot (π * z) = 1 / z + ∑' n : ℕ+, (1 / (z - n) + 1 / (z + n)).

theorem Complex.cot_eq_exp_ratio (z : ) :
z.cot = (exp (2 * I * z) + 1) / (I * (1 - exp (2 * I * z)))
theorem Complex.cot_pi_eq_exp_ratio (z : ) :
(Real.pi * z).cot = (exp (2 * Real.pi * I * z) + 1) / (I * (1 - exp (2 * Real.pi * I * z)))
@[reducible, inline]
noncomputable abbrev sineTerm (x : ) (n : ) :

The main term in the infinite product for sine.

Equations
    Instances For
      theorem tendsto_euler_sin_prod' {x : } (h0 : x 0) :
      Filter.Tendsto (fun (n : ) => iFinset.range n, (1 + sineTerm x i)) Filter.atTop (nhds (Complex.sin (Real.pi * x) / (Real.pi * x)))

      sin π z is non vanishing on the complement of the integers in .

      theorem tendsto_logDeriv_euler_sin_div {x : } (hx : x Complex.integerComplement) :
      Filter.Tendsto (fun (n : ) => logDeriv (fun (z : ) => jFinset.range n, (1 + sineTerm z j)) x) Filter.atTop (nhds (logDeriv (fun (t : ) => Complex.sin (Real.pi * t) / (Real.pi * t)) x))
      theorem logDeriv_sin_div_eq_cot {x : } (hz : x Complex.integerComplement) :
      logDeriv (fun (t : ) => Complex.sin (Real.pi * t) / (Real.pi * t)) x = Real.pi * (Real.pi * x).cot - 1 / x
      @[reducible, inline]
      noncomputable abbrev cotTerm (x : ) (n : ) :

      The term in the infinite sum expansion of cot.

      Equations
        Instances For
          theorem logDeriv_prod_sineTerm_eq_sum_cotTerm {x : } (hx : x Complex.integerComplement) (n : ) :
          logDeriv (fun (z : ) => jFinset.range n, (1 + sineTerm z j)) x = jFinset.range n, cotTerm x j
          theorem cotTerm_identity {x : } (hz : x Complex.integerComplement) (n : ) :
          cotTerm x n = 2 * x * (1 / ((x + (n + 1)) * (x - (n + 1))))
          @[deprecated summable_cotTerm (since := "2026-01-28")]
          theorem Summable_cotTerm {x : } (hz : x Complex.integerComplement) :
          Summable fun (n : ) => cotTerm x n

          Alias of summable_cotTerm.

          theorem cot_series_rep' {x : } (hz : x Complex.integerComplement) :
          Real.pi * (Real.pi * x).cot - 1 / x = ∑' (n : ), (1 / (x - (n + 1)) + 1 / (x + (n + 1)))
          theorem cot_series_rep {x : } (hz : x Complex.integerComplement) :
          Real.pi * (Real.pi * x).cot = 1 / x + ∑' (n : ℕ+), (1 / (x - n) + 1 / (x + n))

          The cotangent infinite sum representation.

          theorem eqOn_iteratedDeriv_cotTerm (k d : ) :
          Set.EqOn (iteratedDeriv k fun (z : ) => cotTerm z d) (fun (z : ) => (-1) ^ k * k.factorial * ((z + (d + 1)) ^ (-1 - k) + (z - (d + 1)) ^ (-1 - k))) Complex.integerComplement
          theorem eqOn_iteratedDerivWithin_cotTerm_integerComplement (k d : ) :
          Set.EqOn (iteratedDerivWithin k (fun (z : ) => cotTerm z d) Complex.integerComplement) (fun (z : ) => (-1) ^ k * k.factorial * ((z + (d + 1)) ^ (-1 - k) + (z - (d + 1)) ^ (-1 - k))) Complex.integerComplement
          theorem eqOn_iteratedDerivWithin_cotTerm_upperHalfPlaneSet (k d : ) :
          Set.EqOn (iteratedDerivWithin k (fun (z : ) => cotTerm z d) UpperHalfPlane.upperHalfPlaneSet) (fun (z : ) => (-1) ^ k * k.factorial * ((z + (d + 1)) ^ (-1 - k) + (z - (d + 1)) ^ (-1 - k))) UpperHalfPlane.upperHalfPlaneSet
          theorem iteratedDerivWithin_cot_sub_inv_eq_add_mul_tsum {z : } {k : } (hk : 1 k) (hz : z UpperHalfPlane.upperHalfPlaneSet) :
          iteratedDerivWithin k (fun (x : ) => Real.pi * (Real.pi * x).cot - 1 / x) UpperHalfPlane.upperHalfPlaneSet z = -(-1) ^ k * k.factorial * z ^ (-1 - k) + (-1) ^ k * k.factorial * ∑' (n : ), (z + n) ^ (-1 - k)
          theorem iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_div_pow {k : } (hk : 1 k) {z : } (hz : z UpperHalfPlane.upperHalfPlaneSet) :
          iteratedDerivWithin k (fun (x : ) => Real.pi * (Real.pi * x).cot) UpperHalfPlane.upperHalfPlaneSet z = (-1) ^ k * k.factorial * ∑' (n : ), 1 / (z + n) ^ (k + 1)

          The series expansion of the iterated derivative of π cot (π z).