Documentation

Mathlib.Topology.Algebra.InfiniteSum.TsumUniformlyOn

Differentiability of sum of functions #

We prove some HasSumUniformlyOn versions of theorems from Mathlib.Analysis.NormedSpace.FunctionSeries.

Alongside this we prove derivWithin_tsum which states that the derivative of a series of functions is the sum of the derivatives, under suitable conditions we also prove an iteratedDerivWithin version.

theorem HasSumUniformlyOn.of_norm_le_summable {ฮฑ : Type u_1} {ฮฒ : Type u_2} {F : Type u_3} [NormedAddCommGroup F] [CompleteSpace F] {u : ฮฑ โ†’ โ„} {f : ฮฑ โ†’ ฮฒ โ†’ F} (hu : Summable u) {s : Set ฮฒ} (hfu : โˆ€ (n : ฮฑ), โˆ€ x โˆˆ s, โ€–f n xโ€– โ‰ค u n) :
HasSumUniformlyOn f (fun (x : ฮฒ) => โˆ‘' (n : ฮฑ), f n x) s
theorem HasSumUniformlyOn.of_norm_le_summable_eventually {ฮฒ : Type u_2} {F : Type u_3} [NormedAddCommGroup F] [CompleteSpace F] {ฮน : Type u_4} {f : ฮน โ†’ ฮฒ โ†’ F} {u : ฮน โ†’ โ„} (hu : Summable u) {s : Set ฮฒ} (hfu : โˆ€แถ  (n : ฮน) in Filter.cofinite, โˆ€ x โˆˆ s, โ€–f n xโ€– โ‰ค u n) :
HasSumUniformlyOn f (fun (x : ฮฒ) => โˆ‘' (n : ฮน), f n x) s
theorem SummableLocallyUniformlyOn.of_locally_bounded_eventually {ฮฑ : Type u_1} {ฮฒ : Type u_2} {F : Type u_3} [NormedAddCommGroup F] [CompleteSpace F] [TopologicalSpace ฮฒ] [LocallyCompactSpace ฮฒ] {f : ฮฑ โ†’ ฮฒ โ†’ F} {s : Set ฮฒ} (hs : IsOpen s) (hu : โˆ€ K โІ s, IsCompact K โ†’ โˆƒ (u : ฮฑ โ†’ โ„), Summable u โˆง โˆ€แถ  (n : ฮฑ) in Filter.cofinite, โˆ€ k โˆˆ K, โ€–f n kโ€– โ‰ค u n) :
theorem SummableLocallyUniformlyOn_of_locally_bounded {ฮฑ : Type u_1} {ฮฒ : Type u_2} {F : Type u_3} [NormedAddCommGroup F] [CompleteSpace F] [TopologicalSpace ฮฒ] [LocallyCompactSpace ฮฒ] {f : ฮฑ โ†’ ฮฒ โ†’ F} {s : Set ฮฒ} (hs : IsOpen s) (hu : โˆ€ K โІ s, IsCompact K โ†’ โˆƒ (u : ฮฑ โ†’ โ„), Summable u โˆง โˆ€ (n : ฮฑ), โˆ€ k โˆˆ K, โ€–f n kโ€– โ‰ค u n) :
theorem derivWithin_tsum {ฮน : Type u_1} {๐•œ : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [IsRCLikeNormedField ๐•œ] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {s : Set ๐•œ} {f : ฮน โ†’ ๐•œ โ†’ F} (hs : IsOpen s) {x : ๐•œ} (hx : x โˆˆ s) (hf : โˆ€ y โˆˆ s, Summable fun (n : ฮน) => f n y) (h : SummableLocallyUniformlyOn (fun (n : ฮน) => derivWithin (fun (z : ๐•œ) => f n z) s) s) (hf2 : โˆ€ (n : ฮน), โˆ€ r โˆˆ s, DifferentiableAt ๐•œ (f n) r) :
derivWithin (fun (z : ๐•œ) => โˆ‘' (n : ฮน), f n z) s x = โˆ‘' (n : ฮน), derivWithin (f n) s x

The derivWithin of a sum whose derivative is absolutely and uniformly convergent sum on an open set s is the sum of the derivatives of sequence of functions on the open set s

theorem iteratedDerivWithin_tsum {ฮน : Type u_1} {๐•œ : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [IsRCLikeNormedField ๐•œ] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {s : Set ๐•œ} {f : ฮน โ†’ ๐•œ โ†’ F} (m : โ„•) (hs : IsOpen s) {x : ๐•œ} (hx : x โˆˆ s) (hsum : โˆ€ t โˆˆ s, Summable fun (n : ฮน) => f n t) (h : โˆ€ (k : โ„•), 1 โ‰ค k โ†’ k โ‰ค m โ†’ SummableLocallyUniformlyOn (fun (n : ฮน) => iteratedDerivWithin k (fun (z : ๐•œ) => f n z) s) s) (hf2 : โˆ€ (n : ฮน) (k : โ„•) (r : ๐•œ), k โ‰ค m โ†’ r โˆˆ s โ†’ DifferentiableAt ๐•œ (iteratedDerivWithin k (fun (z : ๐•œ) => f n z) s) r) :
iteratedDerivWithin m (fun (z : ๐•œ) => โˆ‘' (n : ฮน), f n z) s x = โˆ‘' (n : ฮน), iteratedDerivWithin m (f n) s x

If a sequence of functions fโ‚™ is such that โˆ‘ fโ‚™ (z) is summable for each z in an open set s, and for each 1 โ‰ค k โ‰ค m, the series of k-th iterated derivatives โˆ‘ (iteratedDerivWithin k fโ‚™ s) (z) is summable locally uniformly on s, and each fโ‚™ is m-times differentiable, then the m-th iterated derivative of the sum is the sum of the m-th iterated derivatives.